--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-finetuned-twitter_sentiment_analysis results: [] --- # bert-finetuned-twitter_sentiment_analysis This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4175 - F1: 0.7741 - Roc Auc: 0.8301 - Accuracy: 0.7639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 197 | 0.3546 | 0.7613 | 0.8172 | 0.7210 | | No log | 2.0 | 394 | 0.3312 | 0.7622 | 0.8151 | 0.6924 | | 0.3121 | 3.0 | 591 | 0.3511 | 0.7699 | 0.8244 | 0.7368 | | 0.3121 | 4.0 | 788 | 0.4018 | 0.7833 | 0.8355 | 0.7654 | | 0.3121 | 5.0 | 985 | 0.4175 | 0.7741 | 0.8301 | 0.7639 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3