--- tags: - generated_from_trainer datasets: - epi_classify4_gard metrics: - precision - recall - f1 - accuracy base_model: dmis-lab/biobert-base-cased-v1.2 model-index: - name: results results: - task: type: text-classification name: Text Classification dataset: name: epi_classify4_gard type: epi_classify4_gard args: default metrics: - type: precision value: 0.875 name: Precision - type: recall value: 0.9032258064516129 name: Recall - type: f1 value: 0.8888888888888888 name: F1 - type: accuracy value: 0.986 name: Accuracy --- # results This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the epi_classify4_gard dataset. It achieves the following results on the evaluation set: - Loss: 0.0541 - Precision: 0.875 - Recall: 0.9032 - F1: 0.8889 - Accuracy: 0.986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3