--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-sl results: [] --- # whisper-small-sl This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3292 - Wer: 29.0910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4607 | 0.3978 | 1000 | 0.4599 | 49.4480 | | 0.3716 | 0.7955 | 2000 | 0.3842 | 36.1316 | | 0.2315 | 1.1933 | 3000 | 0.3542 | 32.5667 | | 0.2136 | 1.5911 | 4000 | 0.3388 | 30.3473 | | 0.2097 | 1.9889 | 5000 | 0.3292 | 29.0910 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 2.19.1 - Tokenizers 0.20.1