--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: emotion_model results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: test args: split metrics: - name: Accuracy type: accuracy value: 0.927 --- # emotion_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3611 - Accuracy: 0.927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2619 | 1.0 | 250 | 0.2343 | 0.916 | | 0.121 | 2.0 | 500 | 0.1432 | 0.93 | | 0.1308 | 3.0 | 750 | 0.1565 | 0.9315 | | 0.1012 | 4.0 | 1000 | 0.1595 | 0.925 | | 0.0525 | 5.0 | 1250 | 0.1937 | 0.924 | | 0.0635 | 6.0 | 1500 | 0.2635 | 0.9255 | | 0.0183 | 7.0 | 1750 | 0.2726 | 0.9195 | | 0.0156 | 8.0 | 2000 | 0.3324 | 0.9245 | | 0.0036 | 9.0 | 2250 | 0.3614 | 0.925 | | 0.011 | 10.0 | 2500 | 0.3611 | 0.927 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1