|
|
|
|
|
import itertools |
|
import os |
|
import unittest |
|
from typing import Tuple |
|
|
|
import torch |
|
from pytorchvideo.models.slowfast import create_slowfast, create_slowfast_with_roi_head |
|
from pytorchvideo.transforms.functional import uniform_temporal_subsample_repeated |
|
from torch import nn |
|
|
|
|
|
class TestSlowFast(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
torch.set_rng_state(torch.manual_seed(42).get_state()) |
|
|
|
def test_load_hubconf(self): |
|
path = os.path.join( |
|
os.path.dirname(os.path.realpath(__file__)), |
|
"..", |
|
) |
|
for model_name in ["slowfast_r50", "slowfast_r101"]: |
|
model = torch.hub.load( |
|
repo_or_dir=path, source="local", model=model_name, pretrained=False |
|
) |
|
self.assertIsNotNone(model) |
|
|
|
input_clip_length = 32 |
|
input_crop_size = 224 |
|
input_channel = 3 |
|
|
|
for tensor in TestSlowFast._get_inputs( |
|
input_channel, input_clip_length, input_crop_size |
|
): |
|
with torch.no_grad(): |
|
if tensor[0].shape[1] != input_channel: |
|
with self.assertRaises(RuntimeError): |
|
model(tensor) |
|
continue |
|
|
|
def test_load_hubconf_detection(self): |
|
path = os.path.join( |
|
os.path.dirname(os.path.realpath(__file__)), |
|
"..", |
|
) |
|
input_clip_length = 32 |
|
input_crop_size = 224 |
|
input_channel = 3 |
|
model = torch.hub.load( |
|
repo_or_dir=path, |
|
source="local", |
|
model="slowfast_r50_detection", |
|
pretrained=False, |
|
) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
bbox_test_imputs = torch.tensor([[0.0, 10, 15, 20, 25], [0.0, 11, 16, 21, 26]]) |
|
for tensor in TestSlowFast._get_inputs( |
|
input_channel, input_clip_length, input_crop_size |
|
): |
|
with torch.no_grad(): |
|
if tensor[0].shape[1] != input_channel: |
|
with self.assertRaises(RuntimeError): |
|
model(tensor, bbox_test_imputs) |
|
continue |
|
model(tensor, bbox_test_imputs) |
|
|
|
def test_create_slowfast_with_roi_head_with_callable(self): |
|
input_clip_length = 32 |
|
input_crop_size = 224 |
|
input_channel = 3 |
|
model = create_slowfast_with_roi_head() |
|
self.assertIsNotNone(model) |
|
|
|
|
|
bbox_test_imputs = torch.tensor([[0.0, 10, 15, 20, 25], [0.0, 11, 16, 21, 26]]) |
|
for tensor in TestSlowFast._get_inputs( |
|
input_channel, input_clip_length, input_crop_size |
|
): |
|
with torch.no_grad(): |
|
if tensor[0].shape[1] != input_channel: |
|
with self.assertRaises(RuntimeError): |
|
model(tensor, bbox_test_imputs) |
|
continue |
|
model(tensor, bbox_test_imputs) |
|
|
|
def test_create_slowfast_with_callable(self): |
|
""" |
|
Test builder `create_slowfast` with callable inputs. |
|
""" |
|
for (norm, activation) in itertools.product( |
|
(nn.BatchNorm3d, None), (nn.ReLU, nn.Sigmoid, None) |
|
): |
|
input_clip_length = 32 |
|
input_crop_size = 224 |
|
input_channel = 3 |
|
|
|
model = create_slowfast( |
|
slowfast_channel_reduction_ratio=8, |
|
slowfast_conv_channel_fusion_ratio=2, |
|
slowfast_fusion_conv_kernel_size=(7, 1, 1), |
|
slowfast_fusion_conv_stride=(4, 1, 1), |
|
input_channels=(input_channel,) * 2, |
|
model_depth=18, |
|
model_num_class=400, |
|
dropout_rate=0, |
|
norm=norm, |
|
activation=activation, |
|
) |
|
|
|
|
|
for tensor in TestSlowFast._get_inputs( |
|
input_channel, input_clip_length, input_crop_size |
|
): |
|
with torch.no_grad(): |
|
if tensor[0].shape[1] != input_channel: |
|
with self.assertRaises(RuntimeError): |
|
model(tensor) |
|
continue |
|
|
|
model(tensor) |
|
|
|
@staticmethod |
|
def _get_inputs( |
|
channel: int = 3, |
|
clip_length: int = 8, |
|
crop_size: int = 224, |
|
frame_ratios: Tuple[int] = (4, 1), |
|
) -> torch.tensor: |
|
""" |
|
Provide different tensors as test cases. |
|
|
|
Yield: |
|
(torch.tensor): tensor as test case input. |
|
""" |
|
|
|
shapes = ((1, channel, clip_length, crop_size, crop_size),) |
|
for shape in shapes: |
|
yield uniform_temporal_subsample_repeated( |
|
torch.rand(shape), frame_ratios=frame_ratios, temporal_dim=2 |
|
) |
|
|