---
base_model: Qwen/Qwen2.5-14B-Instruct
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: outputs/lora-out
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: Qwen/Qwen2.5-14B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: output.jsonl
type:
field_instruction: instruction
field_input: input
field_output: output
format: "<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n"
special_tokens:
bos_token:
eos_token: "<|im_end|>"
pad_token: "<|endoftext|>"
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: mssong_axolotl
wandb_entity: mssong
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
optimizer:
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs:
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience: 3
local_rank:
logging_steps: 10
xformers_attention:
flash_attention: true
#warmup_ratio: 0.02
warmup_steps: 100
eval_steps: 100
save_steps: 500
save_total_limit: 2
eval_sample_packing:
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
trust_remote_code: true
```
# outputs/lora-out
This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0035 | 1 | 0.6979 |
| 0.046 | 0.3515 | 100 | 0.0793 |
| 0.0259 | 0.7030 | 200 | 0.0519 |
| 0.0242 | 1.0545 | 300 | 0.0447 |
| 0.0194 | 1.4060 | 400 | 0.0435 |
| 0.016 | 1.7575 | 500 | 0.0427 |
| 0.0097 | 2.1090 | 600 | 0.0392 |
| 0.0179 | 2.4605 | 700 | 0.0410 |
| 0.0081 | 2.8120 | 800 | 0.0405 |
### Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0