--- license: mit language: - de - en tags: - translation - pytorch datasets: - multi30k metrics: - bleu model-index: - name: multi30k results: - task: type: translation dataset: type: multi30k name: multi30k-de-en metrics: - type: bleu value: 33.468 name: Test BLEU args: n_gram=4 --- # Seq2seq + Attention [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/msarmi9/dlxp/blob/master/colab/seq2seq.ipynb) Pytorch implementation of [Neural Machine Translation by Jointly Learning to Align and Translate](https://arxiv.org/abs/1409.0473). Trained on the [Multi30k-de-en](http://www.statmt.org/wmt16/multimodal-task.html#task1) dataset with sentencepiece as the tokenizer. Here's the attention heatmap of a random sample from the test set: ![attention-heatmap](attention-heatmap.png)