--- base_model: microsoft/phi-4 library_name: peft license: mit datasets: - vicgalle/alpaca-gpt4 language: - en pipeline_tag: text-generation --- # Model Card for FlowerTune-phi-4-NLP-PEFT This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework. The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/). ## Model Details Please check the following GitHub project for model details and evaluation results: [https://github.com/mrs83/FlowerTune-phi-4-NLP](https://github.com/mrs83/FlowerTune-phi-4-NLP) ## How to Get Started with the Model Use this model as: ``` from peft import PeftModel from transformers import AutoModelForCausalLM base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-4") model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-phi-4-NLP-PEFT") ``` ### Evaluation Results (Accuracy) - **STEM**: 40.66 % - **Social Sciences**: 74.52 % - **Humanities**: 51.75 % - **Average**: 55.64 % ### Communication Budget 45804.69 Megabytes ### Framework versions - PEFT 0.14.0 - Flower 1.13.0