---
tags:
- generated_from_trainer
- code
- coding
- llama
model-index:
- name: FalCoder
results: []
license: apache-2.0
language:
- code
thumbnail: https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png
datasets:
- HuggingFaceH4/CodeAlpaca_20K
pipeline_tag: text-generation
---
# LlaMa 2 Coder 🦙👩💻
**LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library.
## Model description 🧠
[Llama-2](https://huggingface.co/meta-llama/Llama-2-7b)
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
## Training and evaluation data 📚
[CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model.
### Training hyperparameters ⚙
```py
optim="paged_adamw_32bit",
num_train_epochs = 2,
eval_steps=50,
save_steps=50,
evaluation_strategy="steps",
save_strategy="steps",
save_total_limit=2,
seed=66,
load_best_model_at_end=True,
logging_steps=1,
learning_rate=2e-4,
fp16=True,
bf16=False,
max_grad_norm=0.3,
warmup_ratio=0.03,
group_by_length=True,
lr_scheduler_type="constant"
```
### Training results 🗒️
| Step | Training Loss | Validation Loss |
|------|----------|----------|
| 50 | 0.624400 | 0.600070 |
| 100 | 0.634100 | 0.592757 |
| 150 | 0.545800 | 0.586652 |
| 200 | 0.572500 | 0.577525 |
| 250 | 0.528000 | 0.590118 |
### Eval results 📊
WIP
### Example of usage 👩💻
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model_id = "mrm8488/llama-2-coder-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
def create_prompt(instruction):
system = "You are a coding assistant that will help the user to resolve the following instruction:"
instruction = "### Instruction: " + instruction
return system + "\n" + instruction + "\n\n" + "### Solution:" + "\n"
def generate(
instruction,
max_new_tokens=128,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
**kwargs,
):
prompt = create_prompt(instruction)
print(prompt)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
attention_mask = inputs["attention_mask"].to("cuda")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Solution:")[1].lstrip("\n")
instruction = """
Edit the following XML code to add a navigation bar to the top of a web page
CliBrAIn
"""
print(generate(instruction))
```
### Citation
```
@misc {manuel_romero_2023,
author = { {Manuel Romero} },
title = { llama-2-coder-7b (Revision d30d193) },
year = 2023,
url = { https://huggingface.co/mrm8488/llama-2-coder-7b },
doi = { 10.57967/hf/0931 },
publisher = { Hugging Face }
}
```