--- tags: - generated_from_trainer - code - coding - llama model-index: - name: FalCoder results: [] license: apache-2.0 language: - code thumbnail: https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png datasets: - HuggingFaceH4/CodeAlpaca_20K pipeline_tag: text-generation ---
llama-2 coder logo
# LlaMa 2 Coder 🦙👩‍💻 **LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library. ## Model description 🧠 [Llama-2](https://huggingface.co/meta-llama/Llama-2-7b) Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. ## Training and evaluation data 📚 [CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model. ### Training hyperparameters ⚙ ```py optim="paged_adamw_32bit", num_train_epochs = 2, eval_steps=50, save_steps=50, evaluation_strategy="steps", save_strategy="steps", save_total_limit=2, seed=66, load_best_model_at_end=True, logging_steps=1, learning_rate=2e-4, fp16=True, bf16=False, max_grad_norm=0.3, warmup_ratio=0.03, group_by_length=True, lr_scheduler_type="constant" ``` ### Training results 🗒️ | Step | Training Loss | Validation Loss | |------|----------|----------| | 50 | 0.624400 | 0.600070 | | 100 | 0.634100 | 0.592757 | | 150 | 0.545800 | 0.586652 | | 200 | 0.572500 | 0.577525 | | 250 | 0.528000 | 0.590118 | ### Eval results 📊 WIP ### Example of usage 👩‍💻 ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model_id = "mrm8488/llama-2-coder-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") def create_prompt(instruction): system = "You are a coding assistant that will help the user to resolve the following instruction:" instruction = "### Instruction: " + instruction return system + "\n" + instruction + "\n\n" + "### Solution:" + "\n" def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs, ): prompt = create_prompt(instruction) print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Solution:")[1].lstrip("\n") instruction = """ Edit the following XML code to add a navigation bar to the top of a web page CliBrAIn """ print(generate(instruction)) ``` ### Citation ``` @misc {manuel_romero_2023, author = { {Manuel Romero} }, title = { llama-2-coder-7b (Revision d30d193) }, year = 2023, url = { https://huggingface.co/mrm8488/llama-2-coder-7b }, doi = { 10.57967/hf/0931 }, publisher = { Hugging Face } } ```