--- language: - en license: mit tags: - generated_from_trainer - image-to-text - image-captioning base_model: microsoft/git-base pipeline_tag: image-to-text model-index: - name: git-base-instagram-cap results: [] --- # git-base-instagram-cap This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an [mrSoul7766/instagram_post_captions](https://huggingface.co/datasets/mrSoul7766/instagram_post_captions). It achieves the following results on the evaluation set: - Loss: 0.0093 ### Usage you can leverage the capabilities provided by the Hugging Face Transformers library. Here's a basic example using Python: ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("image-to-text", model="mrSoul7766/git-base-instagram-cap") # Generate caption caption = pipe("/content/download (12).png",max_new_tokens =100) # Print the generated answer print(caption[0]['generated_text']) ``` ``` i love my blonde character in kim kardashian hollywood! i'm playing now who's playing with me? ``` ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0