import streamlit as st import os import torch from torch.utils.data import DataLoader from config import get_config_universal from dataset import DataSet from datasetbuilder import DataSetBuilder from test import Test from visualization.steamlit_plot import plot_kinematic_predictions dataset_name = 'camargo' config = get_config_universal(dataset_name) # model_file = 'transformertsai_g1g2rardsasd_g1g2rardsasd.pt' # model = torch.load(os.path.join('./caches/trained_model/v05', model_file)) sensor_options = {'Thigh & Shank & Foot': ['foot', 'shank', 'thigh'], 'Thigh & Shank': ['thigh', 'shank'], 'Thigh & Foot': ['thigh', 'foot'], 'Shank & Foot': ['shank', 'foot'], 'Thigh': ['thigh'], 'Shank': ['shank'], 'Foot': ['foot']} @st.cache def fetch_data(config): dataset_handler = DataSet(config, load_dataset=True) kihadataset_train, kihadataset_test = dataset_handler.run_dataset_split_loop() kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'] = dataset_handler.run_segmentation( kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels']) kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'] = dataset_handler.run_segmentation( kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels']) train_dataset = DataSetBuilder(kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'], transform_method=config['data_transformer'], scaler=None, noise=None) test_dataset = DataSetBuilder(kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'], transform_method=config['data_transformer'], scaler=train_dataset.scaler, noise=None) test_dataloader = DataLoader(dataset=test_dataset, batch_size=config['batch_size'], shuffle=False) return test_dataloader, kihadataset_test # @st.cache() def fetch_model(sensor_name, model_name): device = torch.device('cpu') model_names = {'CNNLSTM':'hernandez2021cnnlstm', 'BiLSTM':'bilstm', 'BioMAT': 'transformertsai'} sensor_names = {'Thigh & Shank & Foot':'thighshankfoot', 'Thigh & Shank':'thighshank', 'Thigh & Foot':'thighfoot', 'Shank & Foot':'shankfoot', 'Thigh':'thigh', 'Shank':'shank', 'Foot':'foot'} if sensor_names[sensor_name]=='thighshankfoot': model_file = model_names[model_name] + '_g1g2rardsasd_g1g2rardsasd.pt' else: model_file = sensor_names[sensor_name] + '_' + model_names[model_name]+'_g1g2rardsasd_g1g2rardsasd.pt' # model = torch.load(os.path.join('./caches/trained_model/v05', model_file), map_location=device) st.write(model_file) model = torch.load(os.path.join('./caches/trained_model/v05', model_file)) return model # @st.cache def fetch_predictions(model): test_handler = Test() y_pred, y_true, loss = test_handler.run_testing(config, model, test_dataloader=test_dataloader) y_true = y_true.detach().cpu().clone().numpy() y_pred = y_pred.detach().cpu().clone().numpy() return y_pred, y_true, loss # sensor_name = 'Thigh & Shank & Foot' # config['sensor_sensor'] = sensor_options[sensor_name] # test_dataloader, kihadataset_test = fetch_data(config) # model = fetch_model(sensor_name, 'BioMAT') # y_pred, y_true, loss = fetch_predictions(model) # fig = plot_kinematic_predictions(y_true, y_pred, kihadataset_test['labels'], 'AB24', # selected_activities= ['LevelGround Walking', 'Ramp Ascent', 'Ramp Descent', 'Stair Ascent', 'Stair Descent'], # selected_index_to_plot=1) st.set_page_config(layout="wide") # col1, col2, col3 = st.columns(3) # with col2: st.title('BioMAT:Biomechanical Multi-Activity Transformer Model for Joint Kinematic Prediction From IMUs') # st.info('If you change the sensor configeration, press rerun', icon="ℹ️") st.sidebar.title('Sensor Configuration') selected_sensor = st.sidebar.selectbox('Pick one', ['Thigh & Shank & Foot', 'Thigh & Shank', 'Thigh & Foot', 'Shank & Foot', 'Thigh', 'Shank', 'Foot']) config['selected_sensors'] = sensor_options[selected_sensor] print(config) st.sidebar.title('Model Configuration') selected_model = st.sidebar.selectbox('Pick one', ['CNNLSTM', 'BiLSTM', 'BioMAT']) st.sidebar.title('Subject') selected_subject = st.sidebar.slider('Pick a Subject Number', min_value=23, max_value=25, step=1) st.sidebar.title('Activity') selected_activities = st.sidebar.multiselect('Pick Output Activities', ['LevelGround Walking', 'Ramp Ascent', 'Ramp Descent', 'Stair Ascent', 'Stair Descent']) index_to_plot = st.sidebar.number_input('Enter a number between 0 and 5', min_value=0, max_value=5) if st.sidebar.button('Predict'): with st.spinner('Data is loading...'): test_dataloader, kihadataset_test = fetch_data(config) st.success('Data is loaded!') with st.spinner('Model is loading...'): model = fetch_model(selected_sensor, selected_model) st.success('Model is loaded!') with st.spinner('Prediction ...'): y_pred, y_true, loss = fetch_predictions(model) st.success('Prediction is Completed!') st.write('plot ...') subject = 'AB' + str(selected_subject) fig = plot_kinematic_predictions(y_true, y_pred, kihadataset_test['labels'], subject, selected_activities=selected_activities, selected_index_to_plot=index_to_plot) st.plotly_chart(fig, use_container_width=True) #