--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: bart-base-finetuned-cnn-dm results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: train args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.5981 --- # bart-base-finetuned-cnn-dm This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 0.9441 - Rouge1: 24.5981 - Rouge2: 12.307 - Rougel: 20.4524 - Rougelsum: 20.5108 - Gen Len: 19.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.961 | 1.0 | 143557 | 0.9441 | 24.5981 | 12.307 | 20.4524 | 20.5108 | 19.9993 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2