--- language: - ara license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Ar_Eg results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Fleurs ar_eg type: google/fleurs config: ar_eg split: None args: 'config: ara, split: test' metrics: - name: Wer type: wer value: 23.1 --- # Whisper Small Ar_Eg This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Fleurs ar_eg dataset. It achieves the following results on the evaluation set: - Loss: 0.4820 - Wer: 23.1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.058 | 6.6667 | 1000 | 0.3934 | 23.6625 | | 0.0014 | 13.3333 | 2000 | 0.4452 | 22.9875 | | 0.0005 | 20.0 | 3000 | 0.4719 | 22.9375 | | 0.0004 | 26.6667 | 4000 | 0.4820 | 23.1 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1