--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-small-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: VideoMAE-small-finetuned-ARSL-diverse-dataset results: [] --- # VideoMAE-small-finetuned-ARSL-diverse-dataset This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-small-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5045 - Accuracy: 0.9663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1437 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2899 | 0.21 | 298 | 2.2096 | 0.1685 | | 1.7238 | 1.21 | 596 | 1.3098 | 0.8652 | | 0.7663 | 2.21 | 894 | 0.7863 | 0.9101 | | 0.6536 | 3.21 | 1192 | 0.5533 | 0.9663 | | 0.6902 | 4.17 | 1437 | 0.5045 | 0.9663 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2