--- license: other base_model: apple/mobilevit-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ARSL_letters_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5693311582381729 --- # ARSL_letters_model This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.7064 - Accuracy: 0.5693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 3.2199 | 0.9902 | 76 | 3.1533 | 0.3613 | | 2.9611 | 1.9935 | 153 | 2.8133 | 0.5473 | | 2.8481 | 2.9707 | 228 | 2.7064 | 0.5693 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1