# model.py from dataclasses import dataclass import torch import torch.nn as nn import torch.nn.functional as F import inspect @dataclass class GPTConfig: vocab_size: int = 50257 block_size: int = 1024 n_layer: int = 12 n_head: int = 12 n_embd: int = 768 # = 64 * 12 class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 self.n_head = config.n_head self.n_embd = config.n_embd self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, config.n_embd * 4) self.c_proj = nn.Linear(config.n_embd * 4, config.n_embd) self.gelu = nn.GELU() self.NANOGPT_SCALE_INIT = 1 def forward(self, x): x = self.gelu(self.c_fc(x)) x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.ln_2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class GPT(nn.Module): def __init__(self, config, master_process): super().__init__() self.master_process = master_process self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd) )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight self.apply(self._init_weights) if self.master_process: print(f"Model initialized. Model has {sum(p.numel() for p in self.parameters() if p.requires_grad):,} trainable parameters") def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.2 if hasattr(module, 'NANOGPT_SCALE_INIT'): std*= (2 * self.config.n_layer)**-0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.size() assert T <= self.config.block_size, "Cannot forward, model block size is exhausted." pos = torch.arange(0, T, dtype=torch.long, device=idx.device) pos_emb = self.transformer.wpe(pos) tok_emb = self.transformer.wte(idx) x = tok_emb + pos_emb for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss def configure_optimizers(self, weight_decay, learning_rate, device): param_dict = {pn: p for pn, p in self.named_parameters()} param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} decay_params = [p for n, p in param_dict.items() if p.dim() >=2] nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] optim_groups = [ {"params": decay_params, "weight_decay": weight_decay}, {"params": nodecay_params, "weight_decay": 0.0}, ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) if self.master_process: print(f"Number of decay parameters tensors: {len(decay_params)}, Number of decay parameters: {num_decay_params:,}") print(f"Number of no decay parameters tensors: {len(nodecay_params)}, Number of no decay parameters: {num_nodecay_params:,}") fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters use_fused = fused_available and 'cuda' == device if self.master_process: print(f'Using {"fused" if use_fused else "unfused"} AdamW') optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8) return optimizer