Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,101 @@
|
|
1 |
-
|
2 |
-
library_name: peft
|
3 |
-
---
|
4 |
-
## Training procedure
|
5 |
|
6 |
-
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
- PEFT 0.4.0
|
|
|
1 |
+
# BIMBA
|
|
|
|
|
|
|
2 |
|
3 |
+
[**BIMBA: Selective-Scan Compression for Long-Range Video Question Answering**](https://arxiv.org/abs/2503.09590)\
|
4 |
+
Md Mohaiminul Islam, Tushar Nagarajan, Huiyu Wang, Gedas Bertasius, and Lorenzo Torresani\
|
5 |
+
<span style="color:red">**Accepted by CVPR 2025**</span>
|
6 |
|
7 |
+
[**🌐 Homepage**](https://sites.google.com/view/bimba-mllm) | [**📖 arXiv**](https://arxiv.org/abs/2503.09590) | [**💻 GitHub**](https://github.com/md-mohaiminul/BIMBA) | [**🤗 Model**](https://huggingface.co/mmiemon/BIMBA-LLaVA-Qwen2-7B) | [**🌟 Demo**](BIMBA-LLaVA-NeXT/demo_selective_scan_compression.ipynb)
|
8 |
+
|
9 |
+
BIMBA is a multimodal large language model (MLLM) capable of efficiently processing long-range videos. Our model leverages the selective scan mechanism of [Mamba](https://arxiv.org/abs/2312.00752) to effectively select critical information from high-dimensional video and transform it into a reduced token sequence for efficient LLM processing. Extensive experiments demonstrate that BIMBA achieves state-of-the-art accuracy on multiple long-form VQA benchmarks, including [PerceptionTest](https://arxiv.org/abs/2305.13786), [NExT-QA](https://arxiv.org/abs/2105.08276), [EgoSchema](https://arxiv.org/abs/2308.09126), [VNBench](https://arxiv.org/abs/2406.09367), [LongVideoBench](https://arxiv.org/abs/2407.15754), [Video-MME](https://arxiv.org/abs/2405.21075), and [MLVU](https://arxiv.org/abs/2406.04264).
|
10 |
+
|
11 |
+
# Quick Start
|
12 |
+
|
13 |
+
```bash
|
14 |
+
from llava.model.builder import load_pretrained_model
|
15 |
+
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
16 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
17 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
18 |
+
from PIL import Image
|
19 |
+
import requests
|
20 |
+
import copy
|
21 |
+
import torch
|
22 |
+
import sys
|
23 |
+
import warnings
|
24 |
+
from decord import VideoReader, cpu
|
25 |
+
import numpy as np
|
26 |
+
warnings.filterwarnings("ignore")
|
27 |
+
|
28 |
+
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
|
29 |
+
if max_frames_num == 0:
|
30 |
+
return np.zeros((1, 336, 336, 3))
|
31 |
+
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
|
32 |
+
total_frame_num = len(vr)
|
33 |
+
video_time = total_frame_num / vr.get_avg_fps()
|
34 |
+
fps = round(vr.get_avg_fps()/fps)
|
35 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
36 |
+
frame_time = [i/fps for i in frame_idx]
|
37 |
+
if len(frame_idx) > max_frames_num or force_sample:
|
38 |
+
sample_fps = max_frames_num
|
39 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
40 |
+
frame_idx = uniform_sampled_frames.tolist()
|
41 |
+
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
42 |
+
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
43 |
+
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
44 |
+
return spare_frames,frame_time,video_time
|
45 |
+
|
46 |
+
model_path = "checkpoints/BIMBA-LLaVA-Qwen2-7B"
|
47 |
+
model_base = "lmms-lab/LLaVA-Video-7B-Qwen2"
|
48 |
+
model_name = "llava_qwen_lora"
|
49 |
+
|
50 |
+
|
51 |
+
device = "cuda"
|
52 |
+
device_map = "auto"
|
53 |
+
tokenizer, model, image_processor, max_length = load_pretrained_model(
|
54 |
+
model_path = model_path,
|
55 |
+
model_base = model_base,
|
56 |
+
model_name = model_name,
|
57 |
+
torch_dtype="bfloat16",
|
58 |
+
device_map=device_map,
|
59 |
+
attn_implementation=None,
|
60 |
+
)
|
61 |
+
|
62 |
+
model.eval()
|
63 |
+
|
64 |
+
|
65 |
+
video_path = "assets/example.mp4"
|
66 |
+
max_frames_num = 64
|
67 |
+
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
|
68 |
+
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
|
69 |
+
video = [video]
|
70 |
+
conv_template = "qwen_1_5"
|
71 |
+
time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
|
72 |
+
question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\nPlease describe this video in detail."
|
73 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
74 |
+
conv.append_message(conv.roles[0], question)
|
75 |
+
conv.append_message(conv.roles[1], None)
|
76 |
+
prompt_question = conv.get_prompt()
|
77 |
+
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
78 |
+
cont = model.generate(
|
79 |
+
input_ids,
|
80 |
+
images=video,
|
81 |
+
modalities= ["video"],
|
82 |
+
do_sample=False,
|
83 |
+
temperature=0,
|
84 |
+
max_new_tokens=4096,
|
85 |
+
)
|
86 |
+
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
|
87 |
+
print(text_outputs)
|
88 |
+
```
|
89 |
+
|
90 |
+
|
91 |
+
## Citation
|
92 |
+
If you find BIMBA useful in your research, please use the following BibTeX entry for citation.
|
93 |
+
```BibTeX
|
94 |
+
@article{islam2025bimba,
|
95 |
+
title={BIMBA: Selective-Scan Compression for Long-Range Video Question Answering},
|
96 |
+
author={Islam, Md Mohaiminul and Nagarajan, Tushar and Wang, Huiyu and Bertasius, Gedas and Torresani, Lorenzo},
|
97 |
+
journal={arXiv preprint arXiv:2503.09590},
|
98 |
+
year={2025}
|
99 |
+
}
|
100 |
+
```
|
101 |
|
|