--- license: apache-2.0 tags: - mlx - mlx-image - vision - image-classification datasets: - imagenet-1k library_name: mlx-image --- # ResNet50 ResNet50 is a computer vision model trained on imagenet-1k. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) and first released in [this repository](https://github.com/KaimingHe/deep-residual-networks). Disclaimer: This is a porting of the torchvision model weights to Apple MLX Framework. ## How to use ```bash pip install mlx-image ``` Here is how to use this model for image classification: ```python from mlxim.model import create_model from mlxim.io import read_rgb from mlxim.transform import ImageNetTransform transform = ImageNetTransform(train=False, img_size=224) x = transform(read_rgb("cat.png")) x = mx.expand_dims(x, 0) model = create_model("resnet50") model.eval() logits = model(x) ``` You can also use the embeds from last conv layer: ```python from mlxim.model import create_model from mlxim.io import read_rgb from mlxim.transform import ImageNetTransform transform = ImageNetTransform(train=False, img_size=224) x = transform(read_rgb("cat.png")) x = mx.expand_dims(x, 0) # first option model = create_model("resnet50", num_classes=0) model.eval() embeds = model(x) # second option model = create_model("resnet50") model.eval() embeds = model.features(x) ``` ## Model Comparison Explore the metrics of this model in [mlx-image model results](https://github.com/riccardomusmeci/mlx-image/blob/main/results/results-imagenet-1k.csv).