diff --git "a/lib/python3.11/site-packages/more_itertools/more.py" "b/lib/python3.11/site-packages/more_itertools/more.py" new file mode 100644--- /dev/null +++ "b/lib/python3.11/site-packages/more_itertools/more.py" @@ -0,0 +1,4569 @@ +import warnings + +from collections import Counter, defaultdict, deque, abc +from collections.abc import Sequence +from functools import cached_property, partial, reduce, wraps +from heapq import heapify, heapreplace, heappop +from itertools import ( + chain, + compress, + count, + cycle, + dropwhile, + groupby, + islice, + repeat, + starmap, + takewhile, + tee, + zip_longest, + product, +) +from math import exp, factorial, floor, log +from queue import Empty, Queue +from random import random, randrange, uniform +from operator import itemgetter, mul, sub, gt, lt, ge, le +from sys import hexversion, maxsize +from time import monotonic + +from .recipes import ( + _marker, + _zip_equal, + UnequalIterablesError, + consume, + flatten, + pairwise, + powerset, + take, + unique_everseen, + all_equal, + batched, +) + +__all__ = [ + 'AbortThread', + 'SequenceView', + 'UnequalIterablesError', + 'adjacent', + 'all_unique', + 'always_iterable', + 'always_reversible', + 'bucket', + 'callback_iter', + 'chunked', + 'chunked_even', + 'circular_shifts', + 'collapse', + 'combination_index', + 'combination_with_replacement_index', + 'consecutive_groups', + 'constrained_batches', + 'consumer', + 'count_cycle', + 'countable', + 'difference', + 'distinct_combinations', + 'distinct_permutations', + 'distribute', + 'divide', + 'duplicates_everseen', + 'duplicates_justseen', + 'exactly_n', + 'filter_except', + 'first', + 'gray_product', + 'groupby_transform', + 'ichunked', + 'iequals', + 'ilen', + 'interleave', + 'interleave_evenly', + 'interleave_longest', + 'intersperse', + 'is_sorted', + 'islice_extended', + 'iterate', + 'last', + 'locate', + 'longest_common_prefix', + 'lstrip', + 'make_decorator', + 'map_except', + 'map_if', + 'map_reduce', + 'mark_ends', + 'minmax', + 'nth_or_last', + 'nth_permutation', + 'nth_product', + 'nth_combination_with_replacement', + 'numeric_range', + 'one', + 'only', + 'outer_product', + 'padded', + 'partial_product', + 'partitions', + 'peekable', + 'permutation_index', + 'product_index', + 'raise_', + 'repeat_each', + 'repeat_last', + 'replace', + 'rlocate', + 'rstrip', + 'run_length', + 'sample', + 'seekable', + 'set_partitions', + 'side_effect', + 'sliced', + 'sort_together', + 'split_after', + 'split_at', + 'split_before', + 'split_into', + 'split_when', + 'spy', + 'stagger', + 'strip', + 'strictly_n', + 'substrings', + 'substrings_indexes', + 'takewhile_inclusive', + 'time_limited', + 'unique_in_window', + 'unique_to_each', + 'unzip', + 'value_chain', + 'windowed', + 'windowed_complete', + 'with_iter', + 'zip_broadcast', + 'zip_equal', + 'zip_offset', +] + + +def chunked(iterable, n, strict=False): + """Break *iterable* into lists of length *n*: + + >>> list(chunked([1, 2, 3, 4, 5, 6], 3)) + [[1, 2, 3], [4, 5, 6]] + + By the default, the last yielded list will have fewer than *n* elements + if the length of *iterable* is not divisible by *n*: + + >>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3)) + [[1, 2, 3], [4, 5, 6], [7, 8]] + + To use a fill-in value instead, see the :func:`grouper` recipe. + + If the length of *iterable* is not divisible by *n* and *strict* is + ``True``, then ``ValueError`` will be raised before the last + list is yielded. + + """ + iterator = iter(partial(take, n, iter(iterable)), []) + if strict: + if n is None: + raise ValueError('n must not be None when using strict mode.') + + def ret(): + for chunk in iterator: + if len(chunk) != n: + raise ValueError('iterable is not divisible by n.') + yield chunk + + return iter(ret()) + else: + return iterator + + +def first(iterable, default=_marker): + """Return the first item of *iterable*, or *default* if *iterable* is + empty. + + >>> first([0, 1, 2, 3]) + 0 + >>> first([], 'some default') + 'some default' + + If *default* is not provided and there are no items in the iterable, + raise ``ValueError``. + + :func:`first` is useful when you have a generator of expensive-to-retrieve + values and want any arbitrary one. It is marginally shorter than + ``next(iter(iterable), default)``. + + """ + try: + return next(iter(iterable)) + except StopIteration as e: + if default is _marker: + raise ValueError( + 'first() was called on an empty iterable, and no ' + 'default value was provided.' + ) from e + return default + + +def last(iterable, default=_marker): + """Return the last item of *iterable*, or *default* if *iterable* is + empty. + + >>> last([0, 1, 2, 3]) + 3 + >>> last([], 'some default') + 'some default' + + If *default* is not provided and there are no items in the iterable, + raise ``ValueError``. + """ + try: + if isinstance(iterable, Sequence): + return iterable[-1] + # Work around https://bugs.python.org/issue38525 + elif hasattr(iterable, '__reversed__') and (hexversion != 0x030800F0): + return next(reversed(iterable)) + else: + return deque(iterable, maxlen=1)[-1] + except (IndexError, TypeError, StopIteration): + if default is _marker: + raise ValueError( + 'last() was called on an empty iterable, and no default was ' + 'provided.' + ) + return default + + +def nth_or_last(iterable, n, default=_marker): + """Return the nth or the last item of *iterable*, + or *default* if *iterable* is empty. + + >>> nth_or_last([0, 1, 2, 3], 2) + 2 + >>> nth_or_last([0, 1], 2) + 1 + >>> nth_or_last([], 0, 'some default') + 'some default' + + If *default* is not provided and there are no items in the iterable, + raise ``ValueError``. + """ + return last(islice(iterable, n + 1), default=default) + + +class peekable: + """Wrap an iterator to allow lookahead and prepending elements. + + Call :meth:`peek` on the result to get the value that will be returned + by :func:`next`. This won't advance the iterator: + + >>> p = peekable(['a', 'b']) + >>> p.peek() + 'a' + >>> next(p) + 'a' + + Pass :meth:`peek` a default value to return that instead of raising + ``StopIteration`` when the iterator is exhausted. + + >>> p = peekable([]) + >>> p.peek('hi') + 'hi' + + peekables also offer a :meth:`prepend` method, which "inserts" items + at the head of the iterable: + + >>> p = peekable([1, 2, 3]) + >>> p.prepend(10, 11, 12) + >>> next(p) + 10 + >>> p.peek() + 11 + >>> list(p) + [11, 12, 1, 2, 3] + + peekables can be indexed. Index 0 is the item that will be returned by + :func:`next`, index 1 is the item after that, and so on: + The values up to the given index will be cached. + + >>> p = peekable(['a', 'b', 'c', 'd']) + >>> p[0] + 'a' + >>> p[1] + 'b' + >>> next(p) + 'a' + + Negative indexes are supported, but be aware that they will cache the + remaining items in the source iterator, which may require significant + storage. + + To check whether a peekable is exhausted, check its truth value: + + >>> p = peekable(['a', 'b']) + >>> if p: # peekable has items + ... list(p) + ['a', 'b'] + >>> if not p: # peekable is exhausted + ... list(p) + [] + + """ + + def __init__(self, iterable): + self._it = iter(iterable) + self._cache = deque() + + def __iter__(self): + return self + + def __bool__(self): + try: + self.peek() + except StopIteration: + return False + return True + + def peek(self, default=_marker): + """Return the item that will be next returned from ``next()``. + + Return ``default`` if there are no items left. If ``default`` is not + provided, raise ``StopIteration``. + + """ + if not self._cache: + try: + self._cache.append(next(self._it)) + except StopIteration: + if default is _marker: + raise + return default + return self._cache[0] + + def prepend(self, *items): + """Stack up items to be the next ones returned from ``next()`` or + ``self.peek()``. The items will be returned in + first in, first out order:: + + >>> p = peekable([1, 2, 3]) + >>> p.prepend(10, 11, 12) + >>> next(p) + 10 + >>> list(p) + [11, 12, 1, 2, 3] + + It is possible, by prepending items, to "resurrect" a peekable that + previously raised ``StopIteration``. + + >>> p = peekable([]) + >>> next(p) + Traceback (most recent call last): + ... + StopIteration + >>> p.prepend(1) + >>> next(p) + 1 + >>> next(p) + Traceback (most recent call last): + ... + StopIteration + + """ + self._cache.extendleft(reversed(items)) + + def __next__(self): + if self._cache: + return self._cache.popleft() + + return next(self._it) + + def _get_slice(self, index): + # Normalize the slice's arguments + step = 1 if (index.step is None) else index.step + if step > 0: + start = 0 if (index.start is None) else index.start + stop = maxsize if (index.stop is None) else index.stop + elif step < 0: + start = -1 if (index.start is None) else index.start + stop = (-maxsize - 1) if (index.stop is None) else index.stop + else: + raise ValueError('slice step cannot be zero') + + # If either the start or stop index is negative, we'll need to cache + # the rest of the iterable in order to slice from the right side. + if (start < 0) or (stop < 0): + self._cache.extend(self._it) + # Otherwise we'll need to find the rightmost index and cache to that + # point. + else: + n = min(max(start, stop) + 1, maxsize) + cache_len = len(self._cache) + if n >= cache_len: + self._cache.extend(islice(self._it, n - cache_len)) + + return list(self._cache)[index] + + def __getitem__(self, index): + if isinstance(index, slice): + return self._get_slice(index) + + cache_len = len(self._cache) + if index < 0: + self._cache.extend(self._it) + elif index >= cache_len: + self._cache.extend(islice(self._it, index + 1 - cache_len)) + + return self._cache[index] + + +def consumer(func): + """Decorator that automatically advances a PEP-342-style "reverse iterator" + to its first yield point so you don't have to call ``next()`` on it + manually. + + >>> @consumer + ... def tally(): + ... i = 0 + ... while True: + ... print('Thing number %s is %s.' % (i, (yield))) + ... i += 1 + ... + >>> t = tally() + >>> t.send('red') + Thing number 0 is red. + >>> t.send('fish') + Thing number 1 is fish. + + Without the decorator, you would have to call ``next(t)`` before + ``t.send()`` could be used. + + """ + + @wraps(func) + def wrapper(*args, **kwargs): + gen = func(*args, **kwargs) + next(gen) + return gen + + return wrapper + + +def ilen(iterable): + """Return the number of items in *iterable*. + + >>> ilen(x for x in range(1000000) if x % 3 == 0) + 333334 + + This consumes the iterable, so handle with care. + + """ + # This approach was selected because benchmarks showed it's likely the + # fastest of the known implementations at the time of writing. + # See GitHub tracker: #236, #230. + counter = count() + deque(zip(iterable, counter), maxlen=0) + return next(counter) + + +def iterate(func, start): + """Return ``start``, ``func(start)``, ``func(func(start))``, ... + + >>> from itertools import islice + >>> list(islice(iterate(lambda x: 2*x, 1), 10)) + [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] + + """ + while True: + yield start + try: + start = func(start) + except StopIteration: + break + + +def with_iter(context_manager): + """Wrap an iterable in a ``with`` statement, so it closes once exhausted. + + For example, this will close the file when the iterator is exhausted:: + + upper_lines = (line.upper() for line in with_iter(open('foo'))) + + Any context manager which returns an iterable is a candidate for + ``with_iter``. + + """ + with context_manager as iterable: + yield from iterable + + +def one(iterable, too_short=None, too_long=None): + """Return the first item from *iterable*, which is expected to contain only + that item. Raise an exception if *iterable* is empty or has more than one + item. + + :func:`one` is useful for ensuring that an iterable contains only one item. + For example, it can be used to retrieve the result of a database query + that is expected to return a single row. + + If *iterable* is empty, ``ValueError`` will be raised. You may specify a + different exception with the *too_short* keyword: + + >>> it = [] + >>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + ValueError: too many items in iterable (expected 1)' + >>> too_short = IndexError('too few items') + >>> one(it, too_short=too_short) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + IndexError: too few items + + Similarly, if *iterable* contains more than one item, ``ValueError`` will + be raised. You may specify a different exception with the *too_long* + keyword: + + >>> it = ['too', 'many'] + >>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + ValueError: Expected exactly one item in iterable, but got 'too', + 'many', and perhaps more. + >>> too_long = RuntimeError + >>> one(it, too_long=too_long) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + RuntimeError + + Note that :func:`one` attempts to advance *iterable* twice to ensure there + is only one item. See :func:`spy` or :func:`peekable` to check iterable + contents less destructively. + + """ + it = iter(iterable) + + try: + first_value = next(it) + except StopIteration as e: + raise ( + too_short or ValueError('too few items in iterable (expected 1)') + ) from e + + try: + second_value = next(it) + except StopIteration: + pass + else: + msg = ( + 'Expected exactly one item in iterable, but got {!r}, {!r}, ' + 'and perhaps more.'.format(first_value, second_value) + ) + raise too_long or ValueError(msg) + + return first_value + + +def raise_(exception, *args): + raise exception(*args) + + +def strictly_n(iterable, n, too_short=None, too_long=None): + """Validate that *iterable* has exactly *n* items and return them if + it does. If it has fewer than *n* items, call function *too_short* + with those items. If it has more than *n* items, call function + *too_long* with the first ``n + 1`` items. + + >>> iterable = ['a', 'b', 'c', 'd'] + >>> n = 4 + >>> list(strictly_n(iterable, n)) + ['a', 'b', 'c', 'd'] + + By default, *too_short* and *too_long* are functions that raise + ``ValueError``. + + >>> list(strictly_n('ab', 3)) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + ValueError: too few items in iterable (got 2) + + >>> list(strictly_n('abc', 2)) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + ValueError: too many items in iterable (got at least 3) + + You can instead supply functions that do something else. + *too_short* will be called with the number of items in *iterable*. + *too_long* will be called with `n + 1`. + + >>> def too_short(item_count): + ... raise RuntimeError + >>> it = strictly_n('abcd', 6, too_short=too_short) + >>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + RuntimeError + + >>> def too_long(item_count): + ... print('The boss is going to hear about this') + >>> it = strictly_n('abcdef', 4, too_long=too_long) + >>> list(it) + The boss is going to hear about this + ['a', 'b', 'c', 'd'] + + """ + if too_short is None: + too_short = lambda item_count: raise_( + ValueError, + 'Too few items in iterable (got {})'.format(item_count), + ) + + if too_long is None: + too_long = lambda item_count: raise_( + ValueError, + 'Too many items in iterable (got at least {})'.format(item_count), + ) + + it = iter(iterable) + for i in range(n): + try: + item = next(it) + except StopIteration: + too_short(i) + return + else: + yield item + + try: + next(it) + except StopIteration: + pass + else: + too_long(n + 1) + + +def distinct_permutations(iterable, r=None): + """Yield successive distinct permutations of the elements in *iterable*. + + >>> sorted(distinct_permutations([1, 0, 1])) + [(0, 1, 1), (1, 0, 1), (1, 1, 0)] + + Equivalent to ``set(permutations(iterable))``, except duplicates are not + generated and thrown away. For larger input sequences this is much more + efficient. + + Duplicate permutations arise when there are duplicated elements in the + input iterable. The number of items returned is + `n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of + items input, and each `x_i` is the count of a distinct item in the input + sequence. + + If *r* is given, only the *r*-length permutations are yielded. + + >>> sorted(distinct_permutations([1, 0, 1], r=2)) + [(0, 1), (1, 0), (1, 1)] + >>> sorted(distinct_permutations(range(3), r=2)) + [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] + + """ + + # Algorithm: https://w.wiki/Qai + def _full(A): + while True: + # Yield the permutation we have + yield tuple(A) + + # Find the largest index i such that A[i] < A[i + 1] + for i in range(size - 2, -1, -1): + if A[i] < A[i + 1]: + break + # If no such index exists, this permutation is the last one + else: + return + + # Find the largest index j greater than j such that A[i] < A[j] + for j in range(size - 1, i, -1): + if A[i] < A[j]: + break + + # Swap the value of A[i] with that of A[j], then reverse the + # sequence from A[i + 1] to form the new permutation + A[i], A[j] = A[j], A[i] + A[i + 1 :] = A[: i - size : -1] # A[i + 1:][::-1] + + # Algorithm: modified from the above + def _partial(A, r): + # Split A into the first r items and the last r items + head, tail = A[:r], A[r:] + right_head_indexes = range(r - 1, -1, -1) + left_tail_indexes = range(len(tail)) + + while True: + # Yield the permutation we have + yield tuple(head) + + # Starting from the right, find the first index of the head with + # value smaller than the maximum value of the tail - call it i. + pivot = tail[-1] + for i in right_head_indexes: + if head[i] < pivot: + break + pivot = head[i] + else: + return + + # Starting from the left, find the first value of the tail + # with a value greater than head[i] and swap. + for j in left_tail_indexes: + if tail[j] > head[i]: + head[i], tail[j] = tail[j], head[i] + break + # If we didn't find one, start from the right and find the first + # index of the head with a value greater than head[i] and swap. + else: + for j in right_head_indexes: + if head[j] > head[i]: + head[i], head[j] = head[j], head[i] + break + + # Reverse head[i + 1:] and swap it with tail[:r - (i + 1)] + tail += head[: i - r : -1] # head[i + 1:][::-1] + i += 1 + head[i:], tail[:] = tail[: r - i], tail[r - i :] + + items = sorted(iterable) + + size = len(items) + if r is None: + r = size + + if 0 < r <= size: + return _full(items) if (r == size) else _partial(items, r) + + return iter(() if r else ((),)) + + +def intersperse(e, iterable, n=1): + """Intersperse filler element *e* among the items in *iterable*, leaving + *n* items between each filler element. + + >>> list(intersperse('!', [1, 2, 3, 4, 5])) + [1, '!', 2, '!', 3, '!', 4, '!', 5] + + >>> list(intersperse(None, [1, 2, 3, 4, 5], n=2)) + [1, 2, None, 3, 4, None, 5] + + """ + if n == 0: + raise ValueError('n must be > 0') + elif n == 1: + # interleave(repeat(e), iterable) -> e, x_0, e, x_1, e, x_2... + # islice(..., 1, None) -> x_0, e, x_1, e, x_2... + return islice(interleave(repeat(e), iterable), 1, None) + else: + # interleave(filler, chunks) -> [e], [x_0, x_1], [e], [x_2, x_3]... + # islice(..., 1, None) -> [x_0, x_1], [e], [x_2, x_3]... + # flatten(...) -> x_0, x_1, e, x_2, x_3... + filler = repeat([e]) + chunks = chunked(iterable, n) + return flatten(islice(interleave(filler, chunks), 1, None)) + + +def unique_to_each(*iterables): + """Return the elements from each of the input iterables that aren't in the + other input iterables. + + For example, suppose you have a set of packages, each with a set of + dependencies:: + + {'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}} + + If you remove one package, which dependencies can also be removed? + + If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not + associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for + ``pkg_2``, and ``D`` is only needed for ``pkg_3``:: + + >>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'}) + [['A'], ['C'], ['D']] + + If there are duplicates in one input iterable that aren't in the others + they will be duplicated in the output. Input order is preserved:: + + >>> unique_to_each("mississippi", "missouri") + [['p', 'p'], ['o', 'u', 'r']] + + It is assumed that the elements of each iterable are hashable. + + """ + pool = [list(it) for it in iterables] + counts = Counter(chain.from_iterable(map(set, pool))) + uniques = {element for element in counts if counts[element] == 1} + return [list(filter(uniques.__contains__, it)) for it in pool] + + +def windowed(seq, n, fillvalue=None, step=1): + """Return a sliding window of width *n* over the given iterable. + + >>> all_windows = windowed([1, 2, 3, 4, 5], 3) + >>> list(all_windows) + [(1, 2, 3), (2, 3, 4), (3, 4, 5)] + + When the window is larger than the iterable, *fillvalue* is used in place + of missing values: + + >>> list(windowed([1, 2, 3], 4)) + [(1, 2, 3, None)] + + Each window will advance in increments of *step*: + + >>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2)) + [(1, 2, 3), (3, 4, 5), (5, 6, '!')] + + To slide into the iterable's items, use :func:`chain` to add filler items + to the left: + + >>> iterable = [1, 2, 3, 4] + >>> n = 3 + >>> padding = [None] * (n - 1) + >>> list(windowed(chain(padding, iterable), 3)) + [(None, None, 1), (None, 1, 2), (1, 2, 3), (2, 3, 4)] + """ + if n < 0: + raise ValueError('n must be >= 0') + if n == 0: + yield tuple() + return + if step < 1: + raise ValueError('step must be >= 1') + + window = deque(maxlen=n) + i = n + for _ in map(window.append, seq): + i -= 1 + if not i: + i = step + yield tuple(window) + + size = len(window) + if size == 0: + return + elif size < n: + yield tuple(chain(window, repeat(fillvalue, n - size))) + elif 0 < i < min(step, n): + window += (fillvalue,) * i + yield tuple(window) + + +def substrings(iterable): + """Yield all of the substrings of *iterable*. + + >>> [''.join(s) for s in substrings('more')] + ['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more'] + + Note that non-string iterables can also be subdivided. + + >>> list(substrings([0, 1, 2])) + [(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)] + + """ + # The length-1 substrings + seq = [] + for item in iter(iterable): + seq.append(item) + yield (item,) + seq = tuple(seq) + item_count = len(seq) + + # And the rest + for n in range(2, item_count + 1): + for i in range(item_count - n + 1): + yield seq[i : i + n] + + +def substrings_indexes(seq, reverse=False): + """Yield all substrings and their positions in *seq* + + The items yielded will be a tuple of the form ``(substr, i, j)``, where + ``substr == seq[i:j]``. + + This function only works for iterables that support slicing, such as + ``str`` objects. + + >>> for item in substrings_indexes('more'): + ... print(item) + ('m', 0, 1) + ('o', 1, 2) + ('r', 2, 3) + ('e', 3, 4) + ('mo', 0, 2) + ('or', 1, 3) + ('re', 2, 4) + ('mor', 0, 3) + ('ore', 1, 4) + ('more', 0, 4) + + Set *reverse* to ``True`` to yield the same items in the opposite order. + + + """ + r = range(1, len(seq) + 1) + if reverse: + r = reversed(r) + return ( + (seq[i : i + L], i, i + L) for L in r for i in range(len(seq) - L + 1) + ) + + +class bucket: + """Wrap *iterable* and return an object that buckets it iterable into + child iterables based on a *key* function. + + >>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3'] + >>> s = bucket(iterable, key=lambda x: x[0]) # Bucket by 1st character + >>> sorted(list(s)) # Get the keys + ['a', 'b', 'c'] + >>> a_iterable = s['a'] + >>> next(a_iterable) + 'a1' + >>> next(a_iterable) + 'a2' + >>> list(s['b']) + ['b1', 'b2', 'b3'] + + The original iterable will be advanced and its items will be cached until + they are used by the child iterables. This may require significant storage. + + By default, attempting to select a bucket to which no items belong will + exhaust the iterable and cache all values. + If you specify a *validator* function, selected buckets will instead be + checked against it. + + >>> from itertools import count + >>> it = count(1, 2) # Infinite sequence of odd numbers + >>> key = lambda x: x % 10 # Bucket by last digit + >>> validator = lambda x: x in {1, 3, 5, 7, 9} # Odd digits only + >>> s = bucket(it, key=key, validator=validator) + >>> 2 in s + False + >>> list(s[2]) + [] + + """ + + def __init__(self, iterable, key, validator=None): + self._it = iter(iterable) + self._key = key + self._cache = defaultdict(deque) + self._validator = validator or (lambda x: True) + + def __contains__(self, value): + if not self._validator(value): + return False + + try: + item = next(self[value]) + except StopIteration: + return False + else: + self._cache[value].appendleft(item) + + return True + + def _get_values(self, value): + """ + Helper to yield items from the parent iterator that match *value*. + Items that don't match are stored in the local cache as they + are encountered. + """ + while True: + # If we've cached some items that match the target value, emit + # the first one and evict it from the cache. + if self._cache[value]: + yield self._cache[value].popleft() + # Otherwise we need to advance the parent iterator to search for + # a matching item, caching the rest. + else: + while True: + try: + item = next(self._it) + except StopIteration: + return + item_value = self._key(item) + if item_value == value: + yield item + break + elif self._validator(item_value): + self._cache[item_value].append(item) + + def __iter__(self): + for item in self._it: + item_value = self._key(item) + if self._validator(item_value): + self._cache[item_value].append(item) + + yield from self._cache.keys() + + def __getitem__(self, value): + if not self._validator(value): + return iter(()) + + return self._get_values(value) + + +def spy(iterable, n=1): + """Return a 2-tuple with a list containing the first *n* elements of + *iterable*, and an iterator with the same items as *iterable*. + This allows you to "look ahead" at the items in the iterable without + advancing it. + + There is one item in the list by default: + + >>> iterable = 'abcdefg' + >>> head, iterable = spy(iterable) + >>> head + ['a'] + >>> list(iterable) + ['a', 'b', 'c', 'd', 'e', 'f', 'g'] + + You may use unpacking to retrieve items instead of lists: + + >>> (head,), iterable = spy('abcdefg') + >>> head + 'a' + >>> (first, second), iterable = spy('abcdefg', 2) + >>> first + 'a' + >>> second + 'b' + + The number of items requested can be larger than the number of items in + the iterable: + + >>> iterable = [1, 2, 3, 4, 5] + >>> head, iterable = spy(iterable, 10) + >>> head + [1, 2, 3, 4, 5] + >>> list(iterable) + [1, 2, 3, 4, 5] + + """ + it = iter(iterable) + head = take(n, it) + + return head.copy(), chain(head, it) + + +def interleave(*iterables): + """Return a new iterable yielding from each iterable in turn, + until the shortest is exhausted. + + >>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8])) + [1, 4, 6, 2, 5, 7] + + For a version that doesn't terminate after the shortest iterable is + exhausted, see :func:`interleave_longest`. + + """ + return chain.from_iterable(zip(*iterables)) + + +def interleave_longest(*iterables): + """Return a new iterable yielding from each iterable in turn, + skipping any that are exhausted. + + >>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8])) + [1, 4, 6, 2, 5, 7, 3, 8] + + This function produces the same output as :func:`roundrobin`, but may + perform better for some inputs (in particular when the number of iterables + is large). + + """ + i = chain.from_iterable(zip_longest(*iterables, fillvalue=_marker)) + return (x for x in i if x is not _marker) + + +def interleave_evenly(iterables, lengths=None): + """ + Interleave multiple iterables so that their elements are evenly distributed + throughout the output sequence. + + >>> iterables = [1, 2, 3, 4, 5], ['a', 'b'] + >>> list(interleave_evenly(iterables)) + [1, 2, 'a', 3, 4, 'b', 5] + + >>> iterables = [[1, 2, 3], [4, 5], [6, 7, 8]] + >>> list(interleave_evenly(iterables)) + [1, 6, 4, 2, 7, 3, 8, 5] + + This function requires iterables of known length. Iterables without + ``__len__()`` can be used by manually specifying lengths with *lengths*: + + >>> from itertools import combinations, repeat + >>> iterables = [combinations(range(4), 2), ['a', 'b', 'c']] + >>> lengths = [4 * (4 - 1) // 2, 3] + >>> list(interleave_evenly(iterables, lengths=lengths)) + [(0, 1), (0, 2), 'a', (0, 3), (1, 2), 'b', (1, 3), (2, 3), 'c'] + + Based on Bresenham's algorithm. + """ + if lengths is None: + try: + lengths = [len(it) for it in iterables] + except TypeError: + raise ValueError( + 'Iterable lengths could not be determined automatically. ' + 'Specify them with the lengths keyword.' + ) + elif len(iterables) != len(lengths): + raise ValueError('Mismatching number of iterables and lengths.') + + dims = len(lengths) + + # sort iterables by length, descending + lengths_permute = sorted( + range(dims), key=lambda i: lengths[i], reverse=True + ) + lengths_desc = [lengths[i] for i in lengths_permute] + iters_desc = [iter(iterables[i]) for i in lengths_permute] + + # the longest iterable is the primary one (Bresenham: the longest + # distance along an axis) + delta_primary, deltas_secondary = lengths_desc[0], lengths_desc[1:] + iter_primary, iters_secondary = iters_desc[0], iters_desc[1:] + errors = [delta_primary // dims] * len(deltas_secondary) + + to_yield = sum(lengths) + while to_yield: + yield next(iter_primary) + to_yield -= 1 + # update errors for each secondary iterable + errors = [e - delta for e, delta in zip(errors, deltas_secondary)] + + # those iterables for which the error is negative are yielded + # ("diagonal step" in Bresenham) + for i, e in enumerate(errors): + if e < 0: + yield next(iters_secondary[i]) + to_yield -= 1 + errors[i] += delta_primary + + +def collapse(iterable, base_type=None, levels=None): + """Flatten an iterable with multiple levels of nesting (e.g., a list of + lists of tuples) into non-iterable types. + + >>> iterable = [(1, 2), ([3, 4], [[5], [6]])] + >>> list(collapse(iterable)) + [1, 2, 3, 4, 5, 6] + + Binary and text strings are not considered iterable and + will not be collapsed. + + To avoid collapsing other types, specify *base_type*: + + >>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']] + >>> list(collapse(iterable, base_type=tuple)) + ['ab', ('cd', 'ef'), 'gh', 'ij'] + + Specify *levels* to stop flattening after a certain level: + + >>> iterable = [('a', ['b']), ('c', ['d'])] + >>> list(collapse(iterable)) # Fully flattened + ['a', 'b', 'c', 'd'] + >>> list(collapse(iterable, levels=1)) # Only one level flattened + ['a', ['b'], 'c', ['d']] + + """ + + def walk(node, level): + if ( + ((levels is not None) and (level > levels)) + or isinstance(node, (str, bytes)) + or ((base_type is not None) and isinstance(node, base_type)) + ): + yield node + return + + try: + tree = iter(node) + except TypeError: + yield node + return + else: + for child in tree: + yield from walk(child, level + 1) + + yield from walk(iterable, 0) + + +def side_effect(func, iterable, chunk_size=None, before=None, after=None): + """Invoke *func* on each item in *iterable* (or on each *chunk_size* group + of items) before yielding the item. + + `func` must be a function that takes a single argument. Its return value + will be discarded. + + *before* and *after* are optional functions that take no arguments. They + will be executed before iteration starts and after it ends, respectively. + + `side_effect` can be used for logging, updating progress bars, or anything + that is not functionally "pure." + + Emitting a status message: + + >>> from more_itertools import consume + >>> func = lambda item: print('Received {}'.format(item)) + >>> consume(side_effect(func, range(2))) + Received 0 + Received 1 + + Operating on chunks of items: + + >>> pair_sums = [] + >>> func = lambda chunk: pair_sums.append(sum(chunk)) + >>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2)) + [0, 1, 2, 3, 4, 5] + >>> list(pair_sums) + [1, 5, 9] + + Writing to a file-like object: + + >>> from io import StringIO + >>> from more_itertools import consume + >>> f = StringIO() + >>> func = lambda x: print(x, file=f) + >>> before = lambda: print(u'HEADER', file=f) + >>> after = f.close + >>> it = [u'a', u'b', u'c'] + >>> consume(side_effect(func, it, before=before, after=after)) + >>> f.closed + True + + """ + try: + if before is not None: + before() + + if chunk_size is None: + for item in iterable: + func(item) + yield item + else: + for chunk in chunked(iterable, chunk_size): + func(chunk) + yield from chunk + finally: + if after is not None: + after() + + +def sliced(seq, n, strict=False): + """Yield slices of length *n* from the sequence *seq*. + + >>> list(sliced((1, 2, 3, 4, 5, 6), 3)) + [(1, 2, 3), (4, 5, 6)] + + By the default, the last yielded slice will have fewer than *n* elements + if the length of *seq* is not divisible by *n*: + + >>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3)) + [(1, 2, 3), (4, 5, 6), (7, 8)] + + If the length of *seq* is not divisible by *n* and *strict* is + ``True``, then ``ValueError`` will be raised before the last + slice is yielded. + + This function will only work for iterables that support slicing. + For non-sliceable iterables, see :func:`chunked`. + + """ + iterator = takewhile(len, (seq[i : i + n] for i in count(0, n))) + if strict: + + def ret(): + for _slice in iterator: + if len(_slice) != n: + raise ValueError("seq is not divisible by n.") + yield _slice + + return iter(ret()) + else: + return iterator + + +def split_at(iterable, pred, maxsplit=-1, keep_separator=False): + """Yield lists of items from *iterable*, where each list is delimited by + an item where callable *pred* returns ``True``. + + >>> list(split_at('abcdcba', lambda x: x == 'b')) + [['a'], ['c', 'd', 'c'], ['a']] + + >>> list(split_at(range(10), lambda n: n % 2 == 1)) + [[0], [2], [4], [6], [8], []] + + At most *maxsplit* splits are done. If *maxsplit* is not specified or -1, + then there is no limit on the number of splits: + + >>> list(split_at(range(10), lambda n: n % 2 == 1, maxsplit=2)) + [[0], [2], [4, 5, 6, 7, 8, 9]] + + By default, the delimiting items are not included in the output. + To include them, set *keep_separator* to ``True``. + + >>> list(split_at('abcdcba', lambda x: x == 'b', keep_separator=True)) + [['a'], ['b'], ['c', 'd', 'c'], ['b'], ['a']] + + """ + if maxsplit == 0: + yield list(iterable) + return + + buf = [] + it = iter(iterable) + for item in it: + if pred(item): + yield buf + if keep_separator: + yield [item] + if maxsplit == 1: + yield list(it) + return + buf = [] + maxsplit -= 1 + else: + buf.append(item) + yield buf + + +def split_before(iterable, pred, maxsplit=-1): + """Yield lists of items from *iterable*, where each list ends just before + an item for which callable *pred* returns ``True``: + + >>> list(split_before('OneTwo', lambda s: s.isupper())) + [['O', 'n', 'e'], ['T', 'w', 'o']] + + >>> list(split_before(range(10), lambda n: n % 3 == 0)) + [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] + + At most *maxsplit* splits are done. If *maxsplit* is not specified or -1, + then there is no limit on the number of splits: + + >>> list(split_before(range(10), lambda n: n % 3 == 0, maxsplit=2)) + [[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]] + """ + if maxsplit == 0: + yield list(iterable) + return + + buf = [] + it = iter(iterable) + for item in it: + if pred(item) and buf: + yield buf + if maxsplit == 1: + yield [item] + list(it) + return + buf = [] + maxsplit -= 1 + buf.append(item) + if buf: + yield buf + + +def split_after(iterable, pred, maxsplit=-1): + """Yield lists of items from *iterable*, where each list ends with an + item where callable *pred* returns ``True``: + + >>> list(split_after('one1two2', lambda s: s.isdigit())) + [['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']] + + >>> list(split_after(range(10), lambda n: n % 3 == 0)) + [[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]] + + At most *maxsplit* splits are done. If *maxsplit* is not specified or -1, + then there is no limit on the number of splits: + + >>> list(split_after(range(10), lambda n: n % 3 == 0, maxsplit=2)) + [[0], [1, 2, 3], [4, 5, 6, 7, 8, 9]] + + """ + if maxsplit == 0: + yield list(iterable) + return + + buf = [] + it = iter(iterable) + for item in it: + buf.append(item) + if pred(item) and buf: + yield buf + if maxsplit == 1: + buf = list(it) + if buf: + yield buf + return + buf = [] + maxsplit -= 1 + if buf: + yield buf + + +def split_when(iterable, pred, maxsplit=-1): + """Split *iterable* into pieces based on the output of *pred*. + *pred* should be a function that takes successive pairs of items and + returns ``True`` if the iterable should be split in between them. + + For example, to find runs of increasing numbers, split the iterable when + element ``i`` is larger than element ``i + 1``: + + >>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2], lambda x, y: x > y)) + [[1, 2, 3, 3], [2, 5], [2, 4], [2]] + + At most *maxsplit* splits are done. If *maxsplit* is not specified or -1, + then there is no limit on the number of splits: + + >>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2], + ... lambda x, y: x > y, maxsplit=2)) + [[1, 2, 3, 3], [2, 5], [2, 4, 2]] + + """ + if maxsplit == 0: + yield list(iterable) + return + + it = iter(iterable) + try: + cur_item = next(it) + except StopIteration: + return + + buf = [cur_item] + for next_item in it: + if pred(cur_item, next_item): + yield buf + if maxsplit == 1: + yield [next_item] + list(it) + return + buf = [] + maxsplit -= 1 + + buf.append(next_item) + cur_item = next_item + + yield buf + + +def split_into(iterable, sizes): + """Yield a list of sequential items from *iterable* of length 'n' for each + integer 'n' in *sizes*. + + >>> list(split_into([1,2,3,4,5,6], [1,2,3])) + [[1], [2, 3], [4, 5, 6]] + + If the sum of *sizes* is smaller than the length of *iterable*, then the + remaining items of *iterable* will not be returned. + + >>> list(split_into([1,2,3,4,5,6], [2,3])) + [[1, 2], [3, 4, 5]] + + If the sum of *sizes* is larger than the length of *iterable*, fewer items + will be returned in the iteration that overruns *iterable* and further + lists will be empty: + + >>> list(split_into([1,2,3,4], [1,2,3,4])) + [[1], [2, 3], [4], []] + + When a ``None`` object is encountered in *sizes*, the returned list will + contain items up to the end of *iterable* the same way that itertools.slice + does: + + >>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None])) + [[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]] + + :func:`split_into` can be useful for grouping a series of items where the + sizes of the groups are not uniform. An example would be where in a row + from a table, multiple columns represent elements of the same feature + (e.g. a point represented by x,y,z) but, the format is not the same for + all columns. + """ + # convert the iterable argument into an iterator so its contents can + # be consumed by islice in case it is a generator + it = iter(iterable) + + for size in sizes: + if size is None: + yield list(it) + return + else: + yield list(islice(it, size)) + + +def padded(iterable, fillvalue=None, n=None, next_multiple=False): + """Yield the elements from *iterable*, followed by *fillvalue*, such that + at least *n* items are emitted. + + >>> list(padded([1, 2, 3], '?', 5)) + [1, 2, 3, '?', '?'] + + If *next_multiple* is ``True``, *fillvalue* will be emitted until the + number of items emitted is a multiple of *n*:: + + >>> list(padded([1, 2, 3, 4], n=3, next_multiple=True)) + [1, 2, 3, 4, None, None] + + If *n* is ``None``, *fillvalue* will be emitted indefinitely. + + """ + it = iter(iterable) + if n is None: + yield from chain(it, repeat(fillvalue)) + elif n < 1: + raise ValueError('n must be at least 1') + else: + item_count = 0 + for item in it: + yield item + item_count += 1 + + remaining = (n - item_count) % n if next_multiple else n - item_count + for _ in range(remaining): + yield fillvalue + + +def repeat_each(iterable, n=2): + """Repeat each element in *iterable* *n* times. + + >>> list(repeat_each('ABC', 3)) + ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'] + """ + return chain.from_iterable(map(repeat, iterable, repeat(n))) + + +def repeat_last(iterable, default=None): + """After the *iterable* is exhausted, keep yielding its last element. + + >>> list(islice(repeat_last(range(3)), 5)) + [0, 1, 2, 2, 2] + + If the iterable is empty, yield *default* forever:: + + >>> list(islice(repeat_last(range(0), 42), 5)) + [42, 42, 42, 42, 42] + + """ + item = _marker + for item in iterable: + yield item + final = default if item is _marker else item + yield from repeat(final) + + +def distribute(n, iterable): + """Distribute the items from *iterable* among *n* smaller iterables. + + >>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6]) + >>> list(group_1) + [1, 3, 5] + >>> list(group_2) + [2, 4, 6] + + If the length of *iterable* is not evenly divisible by *n*, then the + length of the returned iterables will not be identical: + + >>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7]) + >>> [list(c) for c in children] + [[1, 4, 7], [2, 5], [3, 6]] + + If the length of *iterable* is smaller than *n*, then the last returned + iterables will be empty: + + >>> children = distribute(5, [1, 2, 3]) + >>> [list(c) for c in children] + [[1], [2], [3], [], []] + + This function uses :func:`itertools.tee` and may require significant + storage. If you need the order items in the smaller iterables to match the + original iterable, see :func:`divide`. + + """ + if n < 1: + raise ValueError('n must be at least 1') + + children = tee(iterable, n) + return [islice(it, index, None, n) for index, it in enumerate(children)] + + +def stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None): + """Yield tuples whose elements are offset from *iterable*. + The amount by which the `i`-th item in each tuple is offset is given by + the `i`-th item in *offsets*. + + >>> list(stagger([0, 1, 2, 3])) + [(None, 0, 1), (0, 1, 2), (1, 2, 3)] + >>> list(stagger(range(8), offsets=(0, 2, 4))) + [(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)] + + By default, the sequence will end when the final element of a tuple is the + last item in the iterable. To continue until the first element of a tuple + is the last item in the iterable, set *longest* to ``True``:: + + >>> list(stagger([0, 1, 2, 3], longest=True)) + [(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)] + + By default, ``None`` will be used to replace offsets beyond the end of the + sequence. Specify *fillvalue* to use some other value. + + """ + children = tee(iterable, len(offsets)) + + return zip_offset( + *children, offsets=offsets, longest=longest, fillvalue=fillvalue + ) + + +def zip_equal(*iterables): + """``zip`` the input *iterables* together, but raise + ``UnequalIterablesError`` if they aren't all the same length. + + >>> it_1 = range(3) + >>> it_2 = iter('abc') + >>> list(zip_equal(it_1, it_2)) + [(0, 'a'), (1, 'b'), (2, 'c')] + + >>> it_1 = range(3) + >>> it_2 = iter('abcd') + >>> list(zip_equal(it_1, it_2)) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + more_itertools.more.UnequalIterablesError: Iterables have different + lengths + + """ + if hexversion >= 0x30A00A6: + warnings.warn( + ( + 'zip_equal will be removed in a future version of ' + 'more-itertools. Use the builtin zip function with ' + 'strict=True instead.' + ), + DeprecationWarning, + ) + + return _zip_equal(*iterables) + + +def zip_offset(*iterables, offsets, longest=False, fillvalue=None): + """``zip`` the input *iterables* together, but offset the `i`-th iterable + by the `i`-th item in *offsets*. + + >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1))) + [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')] + + This can be used as a lightweight alternative to SciPy or pandas to analyze + data sets in which some series have a lead or lag relationship. + + By default, the sequence will end when the shortest iterable is exhausted. + To continue until the longest iterable is exhausted, set *longest* to + ``True``. + + >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True)) + [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')] + + By default, ``None`` will be used to replace offsets beyond the end of the + sequence. Specify *fillvalue* to use some other value. + + """ + if len(iterables) != len(offsets): + raise ValueError("Number of iterables and offsets didn't match") + + staggered = [] + for it, n in zip(iterables, offsets): + if n < 0: + staggered.append(chain(repeat(fillvalue, -n), it)) + elif n > 0: + staggered.append(islice(it, n, None)) + else: + staggered.append(it) + + if longest: + return zip_longest(*staggered, fillvalue=fillvalue) + + return zip(*staggered) + + +def sort_together(iterables, key_list=(0,), key=None, reverse=False): + """Return the input iterables sorted together, with *key_list* as the + priority for sorting. All iterables are trimmed to the length of the + shortest one. + + This can be used like the sorting function in a spreadsheet. If each + iterable represents a column of data, the key list determines which + columns are used for sorting. + + By default, all iterables are sorted using the ``0``-th iterable:: + + >>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')] + >>> sort_together(iterables) + [(1, 2, 3, 4), ('d', 'c', 'b', 'a')] + + Set a different key list to sort according to another iterable. + Specifying multiple keys dictates how ties are broken:: + + >>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')] + >>> sort_together(iterables, key_list=(1, 2)) + [(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')] + + To sort by a function of the elements of the iterable, pass a *key* + function. Its arguments are the elements of the iterables corresponding to + the key list:: + + >>> names = ('a', 'b', 'c') + >>> lengths = (1, 2, 3) + >>> widths = (5, 2, 1) + >>> def area(length, width): + ... return length * width + >>> sort_together([names, lengths, widths], key_list=(1, 2), key=area) + [('c', 'b', 'a'), (3, 2, 1), (1, 2, 5)] + + Set *reverse* to ``True`` to sort in descending order. + + >>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True) + [(3, 2, 1), ('a', 'b', 'c')] + + """ + if key is None: + # if there is no key function, the key argument to sorted is an + # itemgetter + key_argument = itemgetter(*key_list) + else: + # if there is a key function, call it with the items at the offsets + # specified by the key function as arguments + key_list = list(key_list) + if len(key_list) == 1: + # if key_list contains a single item, pass the item at that offset + # as the only argument to the key function + key_offset = key_list[0] + key_argument = lambda zipped_items: key(zipped_items[key_offset]) + else: + # if key_list contains multiple items, use itemgetter to return a + # tuple of items, which we pass as *args to the key function + get_key_items = itemgetter(*key_list) + key_argument = lambda zipped_items: key( + *get_key_items(zipped_items) + ) + + return list( + zip(*sorted(zip(*iterables), key=key_argument, reverse=reverse)) + ) + + +def unzip(iterable): + """The inverse of :func:`zip`, this function disaggregates the elements + of the zipped *iterable*. + + The ``i``-th iterable contains the ``i``-th element from each element + of the zipped iterable. The first element is used to determine the + length of the remaining elements. + + >>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)] + >>> letters, numbers = unzip(iterable) + >>> list(letters) + ['a', 'b', 'c', 'd'] + >>> list(numbers) + [1, 2, 3, 4] + + This is similar to using ``zip(*iterable)``, but it avoids reading + *iterable* into memory. Note, however, that this function uses + :func:`itertools.tee` and thus may require significant storage. + + """ + head, iterable = spy(iter(iterable)) + if not head: + # empty iterable, e.g. zip([], [], []) + return () + # spy returns a one-length iterable as head + head = head[0] + iterables = tee(iterable, len(head)) + + def itemgetter(i): + def getter(obj): + try: + return obj[i] + except IndexError: + # basically if we have an iterable like + # iter([(1, 2, 3), (4, 5), (6,)]) + # the second unzipped iterable would fail at the third tuple + # since it would try to access tup[1] + # same with the third unzipped iterable and the second tuple + # to support these "improperly zipped" iterables, + # we create a custom itemgetter + # which just stops the unzipped iterables + # at first length mismatch + raise StopIteration + + return getter + + return tuple(map(itemgetter(i), it) for i, it in enumerate(iterables)) + + +def divide(n, iterable): + """Divide the elements from *iterable* into *n* parts, maintaining + order. + + >>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6]) + >>> list(group_1) + [1, 2, 3] + >>> list(group_2) + [4, 5, 6] + + If the length of *iterable* is not evenly divisible by *n*, then the + length of the returned iterables will not be identical: + + >>> children = divide(3, [1, 2, 3, 4, 5, 6, 7]) + >>> [list(c) for c in children] + [[1, 2, 3], [4, 5], [6, 7]] + + If the length of the iterable is smaller than n, then the last returned + iterables will be empty: + + >>> children = divide(5, [1, 2, 3]) + >>> [list(c) for c in children] + [[1], [2], [3], [], []] + + This function will exhaust the iterable before returning and may require + significant storage. If order is not important, see :func:`distribute`, + which does not first pull the iterable into memory. + + """ + if n < 1: + raise ValueError('n must be at least 1') + + try: + iterable[:0] + except TypeError: + seq = tuple(iterable) + else: + seq = iterable + + q, r = divmod(len(seq), n) + + ret = [] + stop = 0 + for i in range(1, n + 1): + start = stop + stop += q + 1 if i <= r else q + ret.append(iter(seq[start:stop])) + + return ret + + +def always_iterable(obj, base_type=(str, bytes)): + """If *obj* is iterable, return an iterator over its items:: + + >>> obj = (1, 2, 3) + >>> list(always_iterable(obj)) + [1, 2, 3] + + If *obj* is not iterable, return a one-item iterable containing *obj*:: + + >>> obj = 1 + >>> list(always_iterable(obj)) + [1] + + If *obj* is ``None``, return an empty iterable: + + >>> obj = None + >>> list(always_iterable(None)) + [] + + By default, binary and text strings are not considered iterable:: + + >>> obj = 'foo' + >>> list(always_iterable(obj)) + ['foo'] + + If *base_type* is set, objects for which ``isinstance(obj, base_type)`` + returns ``True`` won't be considered iterable. + + >>> obj = {'a': 1} + >>> list(always_iterable(obj)) # Iterate over the dict's keys + ['a'] + >>> list(always_iterable(obj, base_type=dict)) # Treat dicts as a unit + [{'a': 1}] + + Set *base_type* to ``None`` to avoid any special handling and treat objects + Python considers iterable as iterable: + + >>> obj = 'foo' + >>> list(always_iterable(obj, base_type=None)) + ['f', 'o', 'o'] + """ + if obj is None: + return iter(()) + + if (base_type is not None) and isinstance(obj, base_type): + return iter((obj,)) + + try: + return iter(obj) + except TypeError: + return iter((obj,)) + + +def adjacent(predicate, iterable, distance=1): + """Return an iterable over `(bool, item)` tuples where the `item` is + drawn from *iterable* and the `bool` indicates whether + that item satisfies the *predicate* or is adjacent to an item that does. + + For example, to find whether items are adjacent to a ``3``:: + + >>> list(adjacent(lambda x: x == 3, range(6))) + [(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)] + + Set *distance* to change what counts as adjacent. For example, to find + whether items are two places away from a ``3``: + + >>> list(adjacent(lambda x: x == 3, range(6), distance=2)) + [(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)] + + This is useful for contextualizing the results of a search function. + For example, a code comparison tool might want to identify lines that + have changed, but also surrounding lines to give the viewer of the diff + context. + + The predicate function will only be called once for each item in the + iterable. + + See also :func:`groupby_transform`, which can be used with this function + to group ranges of items with the same `bool` value. + + """ + # Allow distance=0 mainly for testing that it reproduces results with map() + if distance < 0: + raise ValueError('distance must be at least 0') + + i1, i2 = tee(iterable) + padding = [False] * distance + selected = chain(padding, map(predicate, i1), padding) + adjacent_to_selected = map(any, windowed(selected, 2 * distance + 1)) + return zip(adjacent_to_selected, i2) + + +def groupby_transform(iterable, keyfunc=None, valuefunc=None, reducefunc=None): + """An extension of :func:`itertools.groupby` that can apply transformations + to the grouped data. + + * *keyfunc* is a function computing a key value for each item in *iterable* + * *valuefunc* is a function that transforms the individual items from + *iterable* after grouping + * *reducefunc* is a function that transforms each group of items + + >>> iterable = 'aAAbBBcCC' + >>> keyfunc = lambda k: k.upper() + >>> valuefunc = lambda v: v.lower() + >>> reducefunc = lambda g: ''.join(g) + >>> list(groupby_transform(iterable, keyfunc, valuefunc, reducefunc)) + [('A', 'aaa'), ('B', 'bbb'), ('C', 'ccc')] + + Each optional argument defaults to an identity function if not specified. + + :func:`groupby_transform` is useful when grouping elements of an iterable + using a separate iterable as the key. To do this, :func:`zip` the iterables + and pass a *keyfunc* that extracts the first element and a *valuefunc* + that extracts the second element:: + + >>> from operator import itemgetter + >>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3] + >>> values = 'abcdefghi' + >>> iterable = zip(keys, values) + >>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1)) + >>> [(k, ''.join(g)) for k, g in grouper] + [(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')] + + Note that the order of items in the iterable is significant. + Only adjacent items are grouped together, so if you don't want any + duplicate groups, you should sort the iterable by the key function. + + """ + ret = groupby(iterable, keyfunc) + if valuefunc: + ret = ((k, map(valuefunc, g)) for k, g in ret) + if reducefunc: + ret = ((k, reducefunc(g)) for k, g in ret) + + return ret + + +class numeric_range(abc.Sequence, abc.Hashable): + """An extension of the built-in ``range()`` function whose arguments can + be any orderable numeric type. + + With only *stop* specified, *start* defaults to ``0`` and *step* + defaults to ``1``. The output items will match the type of *stop*: + + >>> list(numeric_range(3.5)) + [0.0, 1.0, 2.0, 3.0] + + With only *start* and *stop* specified, *step* defaults to ``1``. The + output items will match the type of *start*: + + >>> from decimal import Decimal + >>> start = Decimal('2.1') + >>> stop = Decimal('5.1') + >>> list(numeric_range(start, stop)) + [Decimal('2.1'), Decimal('3.1'), Decimal('4.1')] + + With *start*, *stop*, and *step* specified the output items will match + the type of ``start + step``: + + >>> from fractions import Fraction + >>> start = Fraction(1, 2) # Start at 1/2 + >>> stop = Fraction(5, 2) # End at 5/2 + >>> step = Fraction(1, 2) # Count by 1/2 + >>> list(numeric_range(start, stop, step)) + [Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)] + + If *step* is zero, ``ValueError`` is raised. Negative steps are supported: + + >>> list(numeric_range(3, -1, -1.0)) + [3.0, 2.0, 1.0, 0.0] + + Be aware of the limitations of floating point numbers; the representation + of the yielded numbers may be surprising. + + ``datetime.datetime`` objects can be used for *start* and *stop*, if *step* + is a ``datetime.timedelta`` object: + + >>> import datetime + >>> start = datetime.datetime(2019, 1, 1) + >>> stop = datetime.datetime(2019, 1, 3) + >>> step = datetime.timedelta(days=1) + >>> items = iter(numeric_range(start, stop, step)) + >>> next(items) + datetime.datetime(2019, 1, 1, 0, 0) + >>> next(items) + datetime.datetime(2019, 1, 2, 0, 0) + + """ + + _EMPTY_HASH = hash(range(0, 0)) + + def __init__(self, *args): + argc = len(args) + if argc == 1: + (self._stop,) = args + self._start = type(self._stop)(0) + self._step = type(self._stop - self._start)(1) + elif argc == 2: + self._start, self._stop = args + self._step = type(self._stop - self._start)(1) + elif argc == 3: + self._start, self._stop, self._step = args + elif argc == 0: + raise TypeError( + 'numeric_range expected at least ' + '1 argument, got {}'.format(argc) + ) + else: + raise TypeError( + 'numeric_range expected at most ' + '3 arguments, got {}'.format(argc) + ) + + self._zero = type(self._step)(0) + if self._step == self._zero: + raise ValueError('numeric_range() arg 3 must not be zero') + self._growing = self._step > self._zero + + def __bool__(self): + if self._growing: + return self._start < self._stop + else: + return self._start > self._stop + + def __contains__(self, elem): + if self._growing: + if self._start <= elem < self._stop: + return (elem - self._start) % self._step == self._zero + else: + if self._start >= elem > self._stop: + return (self._start - elem) % (-self._step) == self._zero + + return False + + def __eq__(self, other): + if isinstance(other, numeric_range): + empty_self = not bool(self) + empty_other = not bool(other) + if empty_self or empty_other: + return empty_self and empty_other # True if both empty + else: + return ( + self._start == other._start + and self._step == other._step + and self._get_by_index(-1) == other._get_by_index(-1) + ) + else: + return False + + def __getitem__(self, key): + if isinstance(key, int): + return self._get_by_index(key) + elif isinstance(key, slice): + step = self._step if key.step is None else key.step * self._step + + if key.start is None or key.start <= -self._len: + start = self._start + elif key.start >= self._len: + start = self._stop + else: # -self._len < key.start < self._len + start = self._get_by_index(key.start) + + if key.stop is None or key.stop >= self._len: + stop = self._stop + elif key.stop <= -self._len: + stop = self._start + else: # -self._len < key.stop < self._len + stop = self._get_by_index(key.stop) + + return numeric_range(start, stop, step) + else: + raise TypeError( + 'numeric range indices must be ' + 'integers or slices, not {}'.format(type(key).__name__) + ) + + def __hash__(self): + if self: + return hash((self._start, self._get_by_index(-1), self._step)) + else: + return self._EMPTY_HASH + + def __iter__(self): + values = (self._start + (n * self._step) for n in count()) + if self._growing: + return takewhile(partial(gt, self._stop), values) + else: + return takewhile(partial(lt, self._stop), values) + + def __len__(self): + return self._len + + @cached_property + def _len(self): + if self._growing: + start = self._start + stop = self._stop + step = self._step + else: + start = self._stop + stop = self._start + step = -self._step + distance = stop - start + if distance <= self._zero: + return 0 + else: # distance > 0 and step > 0: regular euclidean division + q, r = divmod(distance, step) + return int(q) + int(r != self._zero) + + def __reduce__(self): + return numeric_range, (self._start, self._stop, self._step) + + def __repr__(self): + if self._step == 1: + return "numeric_range({}, {})".format( + repr(self._start), repr(self._stop) + ) + else: + return "numeric_range({}, {}, {})".format( + repr(self._start), repr(self._stop), repr(self._step) + ) + + def __reversed__(self): + return iter( + numeric_range( + self._get_by_index(-1), self._start - self._step, -self._step + ) + ) + + def count(self, value): + return int(value in self) + + def index(self, value): + if self._growing: + if self._start <= value < self._stop: + q, r = divmod(value - self._start, self._step) + if r == self._zero: + return int(q) + else: + if self._start >= value > self._stop: + q, r = divmod(self._start - value, -self._step) + if r == self._zero: + return int(q) + + raise ValueError("{} is not in numeric range".format(value)) + + def _get_by_index(self, i): + if i < 0: + i += self._len + if i < 0 or i >= self._len: + raise IndexError("numeric range object index out of range") + return self._start + i * self._step + + +def count_cycle(iterable, n=None): + """Cycle through the items from *iterable* up to *n* times, yielding + the number of completed cycles along with each item. If *n* is omitted the + process repeats indefinitely. + + >>> list(count_cycle('AB', 3)) + [(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')] + + """ + iterable = tuple(iterable) + if not iterable: + return iter(()) + counter = count() if n is None else range(n) + return ((i, item) for i in counter for item in iterable) + + +def mark_ends(iterable): + """Yield 3-tuples of the form ``(is_first, is_last, item)``. + + >>> list(mark_ends('ABC')) + [(True, False, 'A'), (False, False, 'B'), (False, True, 'C')] + + Use this when looping over an iterable to take special action on its first + and/or last items: + + >>> iterable = ['Header', 100, 200, 'Footer'] + >>> total = 0 + >>> for is_first, is_last, item in mark_ends(iterable): + ... if is_first: + ... continue # Skip the header + ... if is_last: + ... continue # Skip the footer + ... total += item + >>> print(total) + 300 + """ + it = iter(iterable) + + try: + b = next(it) + except StopIteration: + return + + try: + for i in count(): + a = b + b = next(it) + yield i == 0, False, a + + except StopIteration: + yield i == 0, True, a + + +def locate(iterable, pred=bool, window_size=None): + """Yield the index of each item in *iterable* for which *pred* returns + ``True``. + + *pred* defaults to :func:`bool`, which will select truthy items: + + >>> list(locate([0, 1, 1, 0, 1, 0, 0])) + [1, 2, 4] + + Set *pred* to a custom function to, e.g., find the indexes for a particular + item. + + >>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b')) + [1, 3] + + If *window_size* is given, then the *pred* function will be called with + that many items. This enables searching for sub-sequences: + + >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3] + >>> pred = lambda *args: args == (1, 2, 3) + >>> list(locate(iterable, pred=pred, window_size=3)) + [1, 5, 9] + + Use with :func:`seekable` to find indexes and then retrieve the associated + items: + + >>> from itertools import count + >>> from more_itertools import seekable + >>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count()) + >>> it = seekable(source) + >>> pred = lambda x: x > 100 + >>> indexes = locate(it, pred=pred) + >>> i = next(indexes) + >>> it.seek(i) + >>> next(it) + 106 + + """ + if window_size is None: + return compress(count(), map(pred, iterable)) + + if window_size < 1: + raise ValueError('window size must be at least 1') + + it = windowed(iterable, window_size, fillvalue=_marker) + return compress(count(), starmap(pred, it)) + + +def longest_common_prefix(iterables): + """Yield elements of the longest common prefix amongst given *iterables*. + + >>> ''.join(longest_common_prefix(['abcd', 'abc', 'abf'])) + 'ab' + + """ + return (c[0] for c in takewhile(all_equal, zip(*iterables))) + + +def lstrip(iterable, pred): + """Yield the items from *iterable*, but strip any from the beginning + for which *pred* returns ``True``. + + For example, to remove a set of items from the start of an iterable: + + >>> iterable = (None, False, None, 1, 2, None, 3, False, None) + >>> pred = lambda x: x in {None, False, ''} + >>> list(lstrip(iterable, pred)) + [1, 2, None, 3, False, None] + + This function is analogous to to :func:`str.lstrip`, and is essentially + an wrapper for :func:`itertools.dropwhile`. + + """ + return dropwhile(pred, iterable) + + +def rstrip(iterable, pred): + """Yield the items from *iterable*, but strip any from the end + for which *pred* returns ``True``. + + For example, to remove a set of items from the end of an iterable: + + >>> iterable = (None, False, None, 1, 2, None, 3, False, None) + >>> pred = lambda x: x in {None, False, ''} + >>> list(rstrip(iterable, pred)) + [None, False, None, 1, 2, None, 3] + + This function is analogous to :func:`str.rstrip`. + + """ + cache = [] + cache_append = cache.append + cache_clear = cache.clear + for x in iterable: + if pred(x): + cache_append(x) + else: + yield from cache + cache_clear() + yield x + + +def strip(iterable, pred): + """Yield the items from *iterable*, but strip any from the + beginning and end for which *pred* returns ``True``. + + For example, to remove a set of items from both ends of an iterable: + + >>> iterable = (None, False, None, 1, 2, None, 3, False, None) + >>> pred = lambda x: x in {None, False, ''} + >>> list(strip(iterable, pred)) + [1, 2, None, 3] + + This function is analogous to :func:`str.strip`. + + """ + return rstrip(lstrip(iterable, pred), pred) + + +class islice_extended: + """An extension of :func:`itertools.islice` that supports negative values + for *stop*, *start*, and *step*. + + >>> iterable = iter('abcdefgh') + >>> list(islice_extended(iterable, -4, -1)) + ['e', 'f', 'g'] + + Slices with negative values require some caching of *iterable*, but this + function takes care to minimize the amount of memory required. + + For example, you can use a negative step with an infinite iterator: + + >>> from itertools import count + >>> list(islice_extended(count(), 110, 99, -2)) + [110, 108, 106, 104, 102, 100] + + You can also use slice notation directly: + + >>> iterable = map(str, count()) + >>> it = islice_extended(iterable)[10:20:2] + >>> list(it) + ['10', '12', '14', '16', '18'] + + """ + + def __init__(self, iterable, *args): + it = iter(iterable) + if args: + self._iterable = _islice_helper(it, slice(*args)) + else: + self._iterable = it + + def __iter__(self): + return self + + def __next__(self): + return next(self._iterable) + + def __getitem__(self, key): + if isinstance(key, slice): + return islice_extended(_islice_helper(self._iterable, key)) + + raise TypeError('islice_extended.__getitem__ argument must be a slice') + + +def _islice_helper(it, s): + start = s.start + stop = s.stop + if s.step == 0: + raise ValueError('step argument must be a non-zero integer or None.') + step = s.step or 1 + + if step > 0: + start = 0 if (start is None) else start + + if start < 0: + # Consume all but the last -start items + cache = deque(enumerate(it, 1), maxlen=-start) + len_iter = cache[-1][0] if cache else 0 + + # Adjust start to be positive + i = max(len_iter + start, 0) + + # Adjust stop to be positive + if stop is None: + j = len_iter + elif stop >= 0: + j = min(stop, len_iter) + else: + j = max(len_iter + stop, 0) + + # Slice the cache + n = j - i + if n <= 0: + return + + for index, item in islice(cache, 0, n, step): + yield item + elif (stop is not None) and (stop < 0): + # Advance to the start position + next(islice(it, start, start), None) + + # When stop is negative, we have to carry -stop items while + # iterating + cache = deque(islice(it, -stop), maxlen=-stop) + + for index, item in enumerate(it): + cached_item = cache.popleft() + if index % step == 0: + yield cached_item + cache.append(item) + else: + # When both start and stop are positive we have the normal case + yield from islice(it, start, stop, step) + else: + start = -1 if (start is None) else start + + if (stop is not None) and (stop < 0): + # Consume all but the last items + n = -stop - 1 + cache = deque(enumerate(it, 1), maxlen=n) + len_iter = cache[-1][0] if cache else 0 + + # If start and stop are both negative they are comparable and + # we can just slice. Otherwise we can adjust start to be negative + # and then slice. + if start < 0: + i, j = start, stop + else: + i, j = min(start - len_iter, -1), None + + for index, item in list(cache)[i:j:step]: + yield item + else: + # Advance to the stop position + if stop is not None: + m = stop + 1 + next(islice(it, m, m), None) + + # stop is positive, so if start is negative they are not comparable + # and we need the rest of the items. + if start < 0: + i = start + n = None + # stop is None and start is positive, so we just need items up to + # the start index. + elif stop is None: + i = None + n = start + 1 + # Both stop and start are positive, so they are comparable. + else: + i = None + n = start - stop + if n <= 0: + return + + cache = list(islice(it, n)) + + yield from cache[i::step] + + +def always_reversible(iterable): + """An extension of :func:`reversed` that supports all iterables, not + just those which implement the ``Reversible`` or ``Sequence`` protocols. + + >>> print(*always_reversible(x for x in range(3))) + 2 1 0 + + If the iterable is already reversible, this function returns the + result of :func:`reversed()`. If the iterable is not reversible, + this function will cache the remaining items in the iterable and + yield them in reverse order, which may require significant storage. + """ + try: + return reversed(iterable) + except TypeError: + return reversed(list(iterable)) + + +def consecutive_groups(iterable, ordering=lambda x: x): + """Yield groups of consecutive items using :func:`itertools.groupby`. + The *ordering* function determines whether two items are adjacent by + returning their position. + + By default, the ordering function is the identity function. This is + suitable for finding runs of numbers: + + >>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40] + >>> for group in consecutive_groups(iterable): + ... print(list(group)) + [1] + [10, 11, 12] + [20] + [30, 31, 32, 33] + [40] + + For finding runs of adjacent letters, try using the :meth:`index` method + of a string of letters: + + >>> from string import ascii_lowercase + >>> iterable = 'abcdfgilmnop' + >>> ordering = ascii_lowercase.index + >>> for group in consecutive_groups(iterable, ordering): + ... print(list(group)) + ['a', 'b', 'c', 'd'] + ['f', 'g'] + ['i'] + ['l', 'm', 'n', 'o', 'p'] + + Each group of consecutive items is an iterator that shares it source with + *iterable*. When an an output group is advanced, the previous group is + no longer available unless its elements are copied (e.g., into a ``list``). + + >>> iterable = [1, 2, 11, 12, 21, 22] + >>> saved_groups = [] + >>> for group in consecutive_groups(iterable): + ... saved_groups.append(list(group)) # Copy group elements + >>> saved_groups + [[1, 2], [11, 12], [21, 22]] + + """ + for k, g in groupby( + enumerate(iterable), key=lambda x: x[0] - ordering(x[1]) + ): + yield map(itemgetter(1), g) + + +def difference(iterable, func=sub, *, initial=None): + """This function is the inverse of :func:`itertools.accumulate`. By default + it will compute the first difference of *iterable* using + :func:`operator.sub`: + + >>> from itertools import accumulate + >>> iterable = accumulate([0, 1, 2, 3, 4]) # produces 0, 1, 3, 6, 10 + >>> list(difference(iterable)) + [0, 1, 2, 3, 4] + + *func* defaults to :func:`operator.sub`, but other functions can be + specified. They will be applied as follows:: + + A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ... + + For example, to do progressive division: + + >>> iterable = [1, 2, 6, 24, 120] + >>> func = lambda x, y: x // y + >>> list(difference(iterable, func)) + [1, 2, 3, 4, 5] + + If the *initial* keyword is set, the first element will be skipped when + computing successive differences. + + >>> it = [10, 11, 13, 16] # from accumulate([1, 2, 3], initial=10) + >>> list(difference(it, initial=10)) + [1, 2, 3] + + """ + a, b = tee(iterable) + try: + first = [next(b)] + except StopIteration: + return iter([]) + + if initial is not None: + first = [] + + return chain(first, map(func, b, a)) + + +class SequenceView(Sequence): + """Return a read-only view of the sequence object *target*. + + :class:`SequenceView` objects are analogous to Python's built-in + "dictionary view" types. They provide a dynamic view of a sequence's items, + meaning that when the sequence updates, so does the view. + + >>> seq = ['0', '1', '2'] + >>> view = SequenceView(seq) + >>> view + SequenceView(['0', '1', '2']) + >>> seq.append('3') + >>> view + SequenceView(['0', '1', '2', '3']) + + Sequence views support indexing, slicing, and length queries. They act + like the underlying sequence, except they don't allow assignment: + + >>> view[1] + '1' + >>> view[1:-1] + ['1', '2'] + >>> len(view) + 4 + + Sequence views are useful as an alternative to copying, as they don't + require (much) extra storage. + + """ + + def __init__(self, target): + if not isinstance(target, Sequence): + raise TypeError + self._target = target + + def __getitem__(self, index): + return self._target[index] + + def __len__(self): + return len(self._target) + + def __repr__(self): + return '{}({})'.format(self.__class__.__name__, repr(self._target)) + + +class seekable: + """Wrap an iterator to allow for seeking backward and forward. This + progressively caches the items in the source iterable so they can be + re-visited. + + Call :meth:`seek` with an index to seek to that position in the source + iterable. + + To "reset" an iterator, seek to ``0``: + + >>> from itertools import count + >>> it = seekable((str(n) for n in count())) + >>> next(it), next(it), next(it) + ('0', '1', '2') + >>> it.seek(0) + >>> next(it), next(it), next(it) + ('0', '1', '2') + >>> next(it) + '3' + + You can also seek forward: + + >>> it = seekable((str(n) for n in range(20))) + >>> it.seek(10) + >>> next(it) + '10' + >>> it.relative_seek(-2) # Seeking relative to the current position + >>> next(it) + '9' + >>> it.seek(20) # Seeking past the end of the source isn't a problem + >>> list(it) + [] + >>> it.seek(0) # Resetting works even after hitting the end + >>> next(it), next(it), next(it) + ('0', '1', '2') + + Call :meth:`peek` to look ahead one item without advancing the iterator: + + >>> it = seekable('1234') + >>> it.peek() + '1' + >>> list(it) + ['1', '2', '3', '4'] + >>> it.peek(default='empty') + 'empty' + + Before the iterator is at its end, calling :func:`bool` on it will return + ``True``. After it will return ``False``: + + >>> it = seekable('5678') + >>> bool(it) + True + >>> list(it) + ['5', '6', '7', '8'] + >>> bool(it) + False + + You may view the contents of the cache with the :meth:`elements` method. + That returns a :class:`SequenceView`, a view that updates automatically: + + >>> it = seekable((str(n) for n in range(10))) + >>> next(it), next(it), next(it) + ('0', '1', '2') + >>> elements = it.elements() + >>> elements + SequenceView(['0', '1', '2']) + >>> next(it) + '3' + >>> elements + SequenceView(['0', '1', '2', '3']) + + By default, the cache grows as the source iterable progresses, so beware of + wrapping very large or infinite iterables. Supply *maxlen* to limit the + size of the cache (this of course limits how far back you can seek). + + >>> from itertools import count + >>> it = seekable((str(n) for n in count()), maxlen=2) + >>> next(it), next(it), next(it), next(it) + ('0', '1', '2', '3') + >>> list(it.elements()) + ['2', '3'] + >>> it.seek(0) + >>> next(it), next(it), next(it), next(it) + ('2', '3', '4', '5') + >>> next(it) + '6' + + """ + + def __init__(self, iterable, maxlen=None): + self._source = iter(iterable) + if maxlen is None: + self._cache = [] + else: + self._cache = deque([], maxlen) + self._index = None + + def __iter__(self): + return self + + def __next__(self): + if self._index is not None: + try: + item = self._cache[self._index] + except IndexError: + self._index = None + else: + self._index += 1 + return item + + item = next(self._source) + self._cache.append(item) + return item + + def __bool__(self): + try: + self.peek() + except StopIteration: + return False + return True + + def peek(self, default=_marker): + try: + peeked = next(self) + except StopIteration: + if default is _marker: + raise + return default + if self._index is None: + self._index = len(self._cache) + self._index -= 1 + return peeked + + def elements(self): + return SequenceView(self._cache) + + def seek(self, index): + self._index = index + remainder = index - len(self._cache) + if remainder > 0: + consume(self, remainder) + + def relative_seek(self, count): + index = len(self._cache) + self.seek(max(index + count, 0)) + + +class run_length: + """ + :func:`run_length.encode` compresses an iterable with run-length encoding. + It yields groups of repeated items with the count of how many times they + were repeated: + + >>> uncompressed = 'abbcccdddd' + >>> list(run_length.encode(uncompressed)) + [('a', 1), ('b', 2), ('c', 3), ('d', 4)] + + :func:`run_length.decode` decompresses an iterable that was previously + compressed with run-length encoding. It yields the items of the + decompressed iterable: + + >>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)] + >>> list(run_length.decode(compressed)) + ['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd'] + + """ + + @staticmethod + def encode(iterable): + return ((k, ilen(g)) for k, g in groupby(iterable)) + + @staticmethod + def decode(iterable): + return chain.from_iterable(repeat(k, n) for k, n in iterable) + + +def exactly_n(iterable, n, predicate=bool): + """Return ``True`` if exactly ``n`` items in the iterable are ``True`` + according to the *predicate* function. + + >>> exactly_n([True, True, False], 2) + True + >>> exactly_n([True, True, False], 1) + False + >>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3) + True + + The iterable will be advanced until ``n + 1`` truthy items are encountered, + so avoid calling it on infinite iterables. + + """ + return len(take(n + 1, filter(predicate, iterable))) == n + + +def circular_shifts(iterable): + """Return a list of circular shifts of *iterable*. + + >>> circular_shifts(range(4)) + [(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)] + """ + lst = list(iterable) + return take(len(lst), windowed(cycle(lst), len(lst))) + + +def make_decorator(wrapping_func, result_index=0): + """Return a decorator version of *wrapping_func*, which is a function that + modifies an iterable. *result_index* is the position in that function's + signature where the iterable goes. + + This lets you use itertools on the "production end," i.e. at function + definition. This can augment what the function returns without changing the + function's code. + + For example, to produce a decorator version of :func:`chunked`: + + >>> from more_itertools import chunked + >>> chunker = make_decorator(chunked, result_index=0) + >>> @chunker(3) + ... def iter_range(n): + ... return iter(range(n)) + ... + >>> list(iter_range(9)) + [[0, 1, 2], [3, 4, 5], [6, 7, 8]] + + To only allow truthy items to be returned: + + >>> truth_serum = make_decorator(filter, result_index=1) + >>> @truth_serum(bool) + ... def boolean_test(): + ... return [0, 1, '', ' ', False, True] + ... + >>> list(boolean_test()) + [1, ' ', True] + + The :func:`peekable` and :func:`seekable` wrappers make for practical + decorators: + + >>> from more_itertools import peekable + >>> peekable_function = make_decorator(peekable) + >>> @peekable_function() + ... def str_range(*args): + ... return (str(x) for x in range(*args)) + ... + >>> it = str_range(1, 20, 2) + >>> next(it), next(it), next(it) + ('1', '3', '5') + >>> it.peek() + '7' + >>> next(it) + '7' + + """ + + # See https://sites.google.com/site/bbayles/index/decorator_factory for + # notes on how this works. + def decorator(*wrapping_args, **wrapping_kwargs): + def outer_wrapper(f): + def inner_wrapper(*args, **kwargs): + result = f(*args, **kwargs) + wrapping_args_ = list(wrapping_args) + wrapping_args_.insert(result_index, result) + return wrapping_func(*wrapping_args_, **wrapping_kwargs) + + return inner_wrapper + + return outer_wrapper + + return decorator + + +def map_reduce(iterable, keyfunc, valuefunc=None, reducefunc=None): + """Return a dictionary that maps the items in *iterable* to categories + defined by *keyfunc*, transforms them with *valuefunc*, and + then summarizes them by category with *reducefunc*. + + *valuefunc* defaults to the identity function if it is unspecified. + If *reducefunc* is unspecified, no summarization takes place: + + >>> keyfunc = lambda x: x.upper() + >>> result = map_reduce('abbccc', keyfunc) + >>> sorted(result.items()) + [('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])] + + Specifying *valuefunc* transforms the categorized items: + + >>> keyfunc = lambda x: x.upper() + >>> valuefunc = lambda x: 1 + >>> result = map_reduce('abbccc', keyfunc, valuefunc) + >>> sorted(result.items()) + [('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])] + + Specifying *reducefunc* summarizes the categorized items: + + >>> keyfunc = lambda x: x.upper() + >>> valuefunc = lambda x: 1 + >>> reducefunc = sum + >>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc) + >>> sorted(result.items()) + [('A', 1), ('B', 2), ('C', 3)] + + You may want to filter the input iterable before applying the map/reduce + procedure: + + >>> all_items = range(30) + >>> items = [x for x in all_items if 10 <= x <= 20] # Filter + >>> keyfunc = lambda x: x % 2 # Evens map to 0; odds to 1 + >>> categories = map_reduce(items, keyfunc=keyfunc) + >>> sorted(categories.items()) + [(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])] + >>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum) + >>> sorted(summaries.items()) + [(0, 90), (1, 75)] + + Note that all items in the iterable are gathered into a list before the + summarization step, which may require significant storage. + + The returned object is a :obj:`collections.defaultdict` with the + ``default_factory`` set to ``None``, such that it behaves like a normal + dictionary. + + """ + valuefunc = (lambda x: x) if (valuefunc is None) else valuefunc + + ret = defaultdict(list) + for item in iterable: + key = keyfunc(item) + value = valuefunc(item) + ret[key].append(value) + + if reducefunc is not None: + for key, value_list in ret.items(): + ret[key] = reducefunc(value_list) + + ret.default_factory = None + return ret + + +def rlocate(iterable, pred=bool, window_size=None): + """Yield the index of each item in *iterable* for which *pred* returns + ``True``, starting from the right and moving left. + + *pred* defaults to :func:`bool`, which will select truthy items: + + >>> list(rlocate([0, 1, 1, 0, 1, 0, 0])) # Truthy at 1, 2, and 4 + [4, 2, 1] + + Set *pred* to a custom function to, e.g., find the indexes for a particular + item: + + >>> iterable = iter('abcb') + >>> pred = lambda x: x == 'b' + >>> list(rlocate(iterable, pred)) + [3, 1] + + If *window_size* is given, then the *pred* function will be called with + that many items. This enables searching for sub-sequences: + + >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3] + >>> pred = lambda *args: args == (1, 2, 3) + >>> list(rlocate(iterable, pred=pred, window_size=3)) + [9, 5, 1] + + Beware, this function won't return anything for infinite iterables. + If *iterable* is reversible, ``rlocate`` will reverse it and search from + the right. Otherwise, it will search from the left and return the results + in reverse order. + + See :func:`locate` to for other example applications. + + """ + if window_size is None: + try: + len_iter = len(iterable) + return (len_iter - i - 1 for i in locate(reversed(iterable), pred)) + except TypeError: + pass + + return reversed(list(locate(iterable, pred, window_size))) + + +def replace(iterable, pred, substitutes, count=None, window_size=1): + """Yield the items from *iterable*, replacing the items for which *pred* + returns ``True`` with the items from the iterable *substitutes*. + + >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1] + >>> pred = lambda x: x == 0 + >>> substitutes = (2, 3) + >>> list(replace(iterable, pred, substitutes)) + [1, 1, 2, 3, 1, 1, 2, 3, 1, 1] + + If *count* is given, the number of replacements will be limited: + + >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0] + >>> pred = lambda x: x == 0 + >>> substitutes = [None] + >>> list(replace(iterable, pred, substitutes, count=2)) + [1, 1, None, 1, 1, None, 1, 1, 0] + + Use *window_size* to control the number of items passed as arguments to + *pred*. This allows for locating and replacing subsequences. + + >>> iterable = [0, 1, 2, 5, 0, 1, 2, 5] + >>> window_size = 3 + >>> pred = lambda *args: args == (0, 1, 2) # 3 items passed to pred + >>> substitutes = [3, 4] # Splice in these items + >>> list(replace(iterable, pred, substitutes, window_size=window_size)) + [3, 4, 5, 3, 4, 5] + + """ + if window_size < 1: + raise ValueError('window_size must be at least 1') + + # Save the substitutes iterable, since it's used more than once + substitutes = tuple(substitutes) + + # Add padding such that the number of windows matches the length of the + # iterable + it = chain(iterable, [_marker] * (window_size - 1)) + windows = windowed(it, window_size) + + n = 0 + for w in windows: + # If the current window matches our predicate (and we haven't hit + # our maximum number of replacements), splice in the substitutes + # and then consume the following windows that overlap with this one. + # For example, if the iterable is (0, 1, 2, 3, 4...) + # and the window size is 2, we have (0, 1), (1, 2), (2, 3)... + # If the predicate matches on (0, 1), we need to zap (0, 1) and (1, 2) + if pred(*w): + if (count is None) or (n < count): + n += 1 + yield from substitutes + consume(windows, window_size - 1) + continue + + # If there was no match (or we've reached the replacement limit), + # yield the first item from the window. + if w and (w[0] is not _marker): + yield w[0] + + +def partitions(iterable): + """Yield all possible order-preserving partitions of *iterable*. + + >>> iterable = 'abc' + >>> for part in partitions(iterable): + ... print([''.join(p) for p in part]) + ['abc'] + ['a', 'bc'] + ['ab', 'c'] + ['a', 'b', 'c'] + + This is unrelated to :func:`partition`. + + """ + sequence = list(iterable) + n = len(sequence) + for i in powerset(range(1, n)): + yield [sequence[i:j] for i, j in zip((0,) + i, i + (n,))] + + +def set_partitions(iterable, k=None): + """ + Yield the set partitions of *iterable* into *k* parts. Set partitions are + not order-preserving. + + >>> iterable = 'abc' + >>> for part in set_partitions(iterable, 2): + ... print([''.join(p) for p in part]) + ['a', 'bc'] + ['ab', 'c'] + ['b', 'ac'] + + + If *k* is not given, every set partition is generated. + + >>> iterable = 'abc' + >>> for part in set_partitions(iterable): + ... print([''.join(p) for p in part]) + ['abc'] + ['a', 'bc'] + ['ab', 'c'] + ['b', 'ac'] + ['a', 'b', 'c'] + + """ + L = list(iterable) + n = len(L) + if k is not None: + if k < 1: + raise ValueError( + "Can't partition in a negative or zero number of groups" + ) + elif k > n: + return + + def set_partitions_helper(L, k): + n = len(L) + if k == 1: + yield [L] + elif n == k: + yield [[s] for s in L] + else: + e, *M = L + for p in set_partitions_helper(M, k - 1): + yield [[e], *p] + for p in set_partitions_helper(M, k): + for i in range(len(p)): + yield p[:i] + [[e] + p[i]] + p[i + 1 :] + + if k is None: + for k in range(1, n + 1): + yield from set_partitions_helper(L, k) + else: + yield from set_partitions_helper(L, k) + + +class time_limited: + """ + Yield items from *iterable* until *limit_seconds* have passed. + If the time limit expires before all items have been yielded, the + ``timed_out`` parameter will be set to ``True``. + + >>> from time import sleep + >>> def generator(): + ... yield 1 + ... yield 2 + ... sleep(0.2) + ... yield 3 + >>> iterable = time_limited(0.1, generator()) + >>> list(iterable) + [1, 2] + >>> iterable.timed_out + True + + Note that the time is checked before each item is yielded, and iteration + stops if the time elapsed is greater than *limit_seconds*. If your time + limit is 1 second, but it takes 2 seconds to generate the first item from + the iterable, the function will run for 2 seconds and not yield anything. + + """ + + def __init__(self, limit_seconds, iterable): + if limit_seconds < 0: + raise ValueError('limit_seconds must be positive') + self.limit_seconds = limit_seconds + self._iterable = iter(iterable) + self._start_time = monotonic() + self.timed_out = False + + def __iter__(self): + return self + + def __next__(self): + item = next(self._iterable) + if monotonic() - self._start_time > self.limit_seconds: + self.timed_out = True + raise StopIteration + + return item + + +def only(iterable, default=None, too_long=None): + """If *iterable* has only one item, return it. + If it has zero items, return *default*. + If it has more than one item, raise the exception given by *too_long*, + which is ``ValueError`` by default. + + >>> only([], default='missing') + 'missing' + >>> only([1]) + 1 + >>> only([1, 2]) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + ValueError: Expected exactly one item in iterable, but got 1, 2, + and perhaps more.' + >>> only([1, 2], too_long=TypeError) # doctest: +IGNORE_EXCEPTION_DETAIL + Traceback (most recent call last): + ... + TypeError + + Note that :func:`only` attempts to advance *iterable* twice to ensure there + is only one item. See :func:`spy` or :func:`peekable` to check + iterable contents less destructively. + """ + it = iter(iterable) + first_value = next(it, default) + + try: + second_value = next(it) + except StopIteration: + pass + else: + msg = ( + 'Expected exactly one item in iterable, but got {!r}, {!r}, ' + 'and perhaps more.'.format(first_value, second_value) + ) + raise too_long or ValueError(msg) + + return first_value + + +class _IChunk: + def __init__(self, iterable, n): + self._it = islice(iterable, n) + self._cache = deque() + + def fill_cache(self): + self._cache.extend(self._it) + + def __iter__(self): + return self + + def __next__(self): + try: + return next(self._it) + except StopIteration: + if self._cache: + return self._cache.popleft() + else: + raise + + +def ichunked(iterable, n): + """Break *iterable* into sub-iterables with *n* elements each. + :func:`ichunked` is like :func:`chunked`, but it yields iterables + instead of lists. + + If the sub-iterables are read in order, the elements of *iterable* + won't be stored in memory. + If they are read out of order, :func:`itertools.tee` is used to cache + elements as necessary. + + >>> from itertools import count + >>> all_chunks = ichunked(count(), 4) + >>> c_1, c_2, c_3 = next(all_chunks), next(all_chunks), next(all_chunks) + >>> list(c_2) # c_1's elements have been cached; c_3's haven't been + [4, 5, 6, 7] + >>> list(c_1) + [0, 1, 2, 3] + >>> list(c_3) + [8, 9, 10, 11] + + """ + source = peekable(iter(iterable)) + ichunk_marker = object() + while True: + # Check to see whether we're at the end of the source iterable + item = source.peek(ichunk_marker) + if item is ichunk_marker: + return + + chunk = _IChunk(source, n) + yield chunk + + # Advance the source iterable and fill previous chunk's cache + chunk.fill_cache() + + +def iequals(*iterables): + """Return ``True`` if all given *iterables* are equal to each other, + which means that they contain the same elements in the same order. + + The function is useful for comparing iterables of different data types + or iterables that do not support equality checks. + + >>> iequals("abc", ['a', 'b', 'c'], ('a', 'b', 'c'), iter("abc")) + True + + >>> iequals("abc", "acb") + False + + Not to be confused with :func:`all_equals`, which checks whether all + elements of iterable are equal to each other. + + """ + return all(map(all_equal, zip_longest(*iterables, fillvalue=object()))) + + +def distinct_combinations(iterable, r): + """Yield the distinct combinations of *r* items taken from *iterable*. + + >>> list(distinct_combinations([0, 0, 1], 2)) + [(0, 0), (0, 1)] + + Equivalent to ``set(combinations(iterable))``, except duplicates are not + generated and thrown away. For larger input sequences this is much more + efficient. + + """ + if r < 0: + raise ValueError('r must be non-negative') + elif r == 0: + yield () + return + pool = tuple(iterable) + generators = [unique_everseen(enumerate(pool), key=itemgetter(1))] + current_combo = [None] * r + level = 0 + while generators: + try: + cur_idx, p = next(generators[-1]) + except StopIteration: + generators.pop() + level -= 1 + continue + current_combo[level] = p + if level + 1 == r: + yield tuple(current_combo) + else: + generators.append( + unique_everseen( + enumerate(pool[cur_idx + 1 :], cur_idx + 1), + key=itemgetter(1), + ) + ) + level += 1 + + +def filter_except(validator, iterable, *exceptions): + """Yield the items from *iterable* for which the *validator* function does + not raise one of the specified *exceptions*. + + *validator* is called for each item in *iterable*. + It should be a function that accepts one argument and raises an exception + if that item is not valid. + + >>> iterable = ['1', '2', 'three', '4', None] + >>> list(filter_except(int, iterable, ValueError, TypeError)) + ['1', '2', '4'] + + If an exception other than one given by *exceptions* is raised by + *validator*, it is raised like normal. + """ + for item in iterable: + try: + validator(item) + except exceptions: + pass + else: + yield item + + +def map_except(function, iterable, *exceptions): + """Transform each item from *iterable* with *function* and yield the + result, unless *function* raises one of the specified *exceptions*. + + *function* is called to transform each item in *iterable*. + It should accept one argument. + + >>> iterable = ['1', '2', 'three', '4', None] + >>> list(map_except(int, iterable, ValueError, TypeError)) + [1, 2, 4] + + If an exception other than one given by *exceptions* is raised by + *function*, it is raised like normal. + """ + for item in iterable: + try: + yield function(item) + except exceptions: + pass + + +def map_if(iterable, pred, func, func_else=lambda x: x): + """Evaluate each item from *iterable* using *pred*. If the result is + equivalent to ``True``, transform the item with *func* and yield it. + Otherwise, transform the item with *func_else* and yield it. + + *pred*, *func*, and *func_else* should each be functions that accept + one argument. By default, *func_else* is the identity function. + + >>> from math import sqrt + >>> iterable = list(range(-5, 5)) + >>> iterable + [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] + >>> list(map_if(iterable, lambda x: x > 3, lambda x: 'toobig')) + [-5, -4, -3, -2, -1, 0, 1, 2, 3, 'toobig'] + >>> list(map_if(iterable, lambda x: x >= 0, + ... lambda x: f'{sqrt(x):.2f}', lambda x: None)) + [None, None, None, None, None, '0.00', '1.00', '1.41', '1.73', '2.00'] + """ + for item in iterable: + yield func(item) if pred(item) else func_else(item) + + +def _sample_unweighted(iterable, k): + # Implementation of "Algorithm L" from the 1994 paper by Kim-Hung Li: + # "Reservoir-Sampling Algorithms of Time Complexity O(n(1+log(N/n)))". + + # Fill up the reservoir (collection of samples) with the first `k` samples + reservoir = take(k, iterable) + + # Generate random number that's the largest in a sample of k U(0,1) numbers + # Largest order statistic: https://en.wikipedia.org/wiki/Order_statistic + W = exp(log(random()) / k) + + # The number of elements to skip before changing the reservoir is a random + # number with a geometric distribution. Sample it using random() and logs. + next_index = k + floor(log(random()) / log(1 - W)) + + for index, element in enumerate(iterable, k): + if index == next_index: + reservoir[randrange(k)] = element + # The new W is the largest in a sample of k U(0, `old_W`) numbers + W *= exp(log(random()) / k) + next_index += floor(log(random()) / log(1 - W)) + 1 + + return reservoir + + +def _sample_weighted(iterable, k, weights): + # Implementation of "A-ExpJ" from the 2006 paper by Efraimidis et al. : + # "Weighted random sampling with a reservoir". + + # Log-transform for numerical stability for weights that are small/large + weight_keys = (log(random()) / weight for weight in weights) + + # Fill up the reservoir (collection of samples) with the first `k` + # weight-keys and elements, then heapify the list. + reservoir = take(k, zip(weight_keys, iterable)) + heapify(reservoir) + + # The number of jumps before changing the reservoir is a random variable + # with an exponential distribution. Sample it using random() and logs. + smallest_weight_key, _ = reservoir[0] + weights_to_skip = log(random()) / smallest_weight_key + + for weight, element in zip(weights, iterable): + if weight >= weights_to_skip: + # The notation here is consistent with the paper, but we store + # the weight-keys in log-space for better numerical stability. + smallest_weight_key, _ = reservoir[0] + t_w = exp(weight * smallest_weight_key) + r_2 = uniform(t_w, 1) # generate U(t_w, 1) + weight_key = log(r_2) / weight + heapreplace(reservoir, (weight_key, element)) + smallest_weight_key, _ = reservoir[0] + weights_to_skip = log(random()) / smallest_weight_key + else: + weights_to_skip -= weight + + # Equivalent to [element for weight_key, element in sorted(reservoir)] + return [heappop(reservoir)[1] for _ in range(k)] + + +def sample(iterable, k, weights=None): + """Return a *k*-length list of elements chosen (without replacement) + from the *iterable*. Like :func:`random.sample`, but works on iterables + of unknown length. + + >>> iterable = range(100) + >>> sample(iterable, 5) # doctest: +SKIP + [81, 60, 96, 16, 4] + + An iterable with *weights* may also be given: + + >>> iterable = range(100) + >>> weights = (i * i + 1 for i in range(100)) + >>> sampled = sample(iterable, 5, weights=weights) # doctest: +SKIP + [79, 67, 74, 66, 78] + + The algorithm can also be used to generate weighted random permutations. + The relative weight of each item determines the probability that it + appears late in the permutation. + + >>> data = "abcdefgh" + >>> weights = range(1, len(data) + 1) + >>> sample(data, k=len(data), weights=weights) # doctest: +SKIP + ['c', 'a', 'b', 'e', 'g', 'd', 'h', 'f'] + """ + if k == 0: + return [] + + iterable = iter(iterable) + if weights is None: + return _sample_unweighted(iterable, k) + else: + weights = iter(weights) + return _sample_weighted(iterable, k, weights) + + +def is_sorted(iterable, key=None, reverse=False, strict=False): + """Returns ``True`` if the items of iterable are in sorted order, and + ``False`` otherwise. *key* and *reverse* have the same meaning that they do + in the built-in :func:`sorted` function. + + >>> is_sorted(['1', '2', '3', '4', '5'], key=int) + True + >>> is_sorted([5, 4, 3, 1, 2], reverse=True) + False + + If *strict*, tests for strict sorting, that is, returns ``False`` if equal + elements are found: + + >>> is_sorted([1, 2, 2]) + True + >>> is_sorted([1, 2, 2], strict=True) + False + + The function returns ``False`` after encountering the first out-of-order + item. If there are no out-of-order items, the iterable is exhausted. + """ + + compare = (le if reverse else ge) if strict else (lt if reverse else gt) + it = iterable if key is None else map(key, iterable) + return not any(starmap(compare, pairwise(it))) + + +class AbortThread(BaseException): + pass + + +class callback_iter: + """Convert a function that uses callbacks to an iterator. + + Let *func* be a function that takes a `callback` keyword argument. + For example: + + >>> def func(callback=None): + ... for i, c in [(1, 'a'), (2, 'b'), (3, 'c')]: + ... if callback: + ... callback(i, c) + ... return 4 + + + Use ``with callback_iter(func)`` to get an iterator over the parameters + that are delivered to the callback. + + >>> with callback_iter(func) as it: + ... for args, kwargs in it: + ... print(args) + (1, 'a') + (2, 'b') + (3, 'c') + + The function will be called in a background thread. The ``done`` property + indicates whether it has completed execution. + + >>> it.done + True + + If it completes successfully, its return value will be available + in the ``result`` property. + + >>> it.result + 4 + + Notes: + + * If the function uses some keyword argument besides ``callback``, supply + *callback_kwd*. + * If it finished executing, but raised an exception, accessing the + ``result`` property will raise the same exception. + * If it hasn't finished executing, accessing the ``result`` + property from within the ``with`` block will raise ``RuntimeError``. + * If it hasn't finished executing, accessing the ``result`` property from + outside the ``with`` block will raise a + ``more_itertools.AbortThread`` exception. + * Provide *wait_seconds* to adjust how frequently the it is polled for + output. + + """ + + def __init__(self, func, callback_kwd='callback', wait_seconds=0.1): + self._func = func + self._callback_kwd = callback_kwd + self._aborted = False + self._future = None + self._wait_seconds = wait_seconds + # Lazily import concurrent.future + self._executor = __import__( + 'concurrent.futures' + ).futures.ThreadPoolExecutor(max_workers=1) + self._iterator = self._reader() + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_value, traceback): + self._aborted = True + self._executor.shutdown() + + def __iter__(self): + return self + + def __next__(self): + return next(self._iterator) + + @property + def done(self): + if self._future is None: + return False + return self._future.done() + + @property + def result(self): + if not self.done: + raise RuntimeError('Function has not yet completed') + + return self._future.result() + + def _reader(self): + q = Queue() + + def callback(*args, **kwargs): + if self._aborted: + raise AbortThread('canceled by user') + + q.put((args, kwargs)) + + self._future = self._executor.submit( + self._func, **{self._callback_kwd: callback} + ) + + while True: + try: + item = q.get(timeout=self._wait_seconds) + except Empty: + pass + else: + q.task_done() + yield item + + if self._future.done(): + break + + remaining = [] + while True: + try: + item = q.get_nowait() + except Empty: + break + else: + q.task_done() + remaining.append(item) + q.join() + yield from remaining + + +def windowed_complete(iterable, n): + """ + Yield ``(beginning, middle, end)`` tuples, where: + + * Each ``middle`` has *n* items from *iterable* + * Each ``beginning`` has the items before the ones in ``middle`` + * Each ``end`` has the items after the ones in ``middle`` + + >>> iterable = range(7) + >>> n = 3 + >>> for beginning, middle, end in windowed_complete(iterable, n): + ... print(beginning, middle, end) + () (0, 1, 2) (3, 4, 5, 6) + (0,) (1, 2, 3) (4, 5, 6) + (0, 1) (2, 3, 4) (5, 6) + (0, 1, 2) (3, 4, 5) (6,) + (0, 1, 2, 3) (4, 5, 6) () + + Note that *n* must be at least 0 and most equal to the length of + *iterable*. + + This function will exhaust the iterable and may require significant + storage. + """ + if n < 0: + raise ValueError('n must be >= 0') + + seq = tuple(iterable) + size = len(seq) + + if n > size: + raise ValueError('n must be <= len(seq)') + + for i in range(size - n + 1): + beginning = seq[:i] + middle = seq[i : i + n] + end = seq[i + n :] + yield beginning, middle, end + + +def all_unique(iterable, key=None): + """ + Returns ``True`` if all the elements of *iterable* are unique (no two + elements are equal). + + >>> all_unique('ABCB') + False + + If a *key* function is specified, it will be used to make comparisons. + + >>> all_unique('ABCb') + True + >>> all_unique('ABCb', str.lower) + False + + The function returns as soon as the first non-unique element is + encountered. Iterables with a mix of hashable and unhashable items can + be used, but the function will be slower for unhashable items. + """ + seenset = set() + seenset_add = seenset.add + seenlist = [] + seenlist_add = seenlist.append + for element in map(key, iterable) if key else iterable: + try: + if element in seenset: + return False + seenset_add(element) + except TypeError: + if element in seenlist: + return False + seenlist_add(element) + return True + + +def nth_product(index, *args): + """Equivalent to ``list(product(*args))[index]``. + + The products of *args* can be ordered lexicographically. + :func:`nth_product` computes the product at sort position *index* without + computing the previous products. + + >>> nth_product(8, range(2), range(2), range(2), range(2)) + (1, 0, 0, 0) + + ``IndexError`` will be raised if the given *index* is invalid. + """ + pools = list(map(tuple, reversed(args))) + ns = list(map(len, pools)) + + c = reduce(mul, ns) + + if index < 0: + index += c + + if not 0 <= index < c: + raise IndexError + + result = [] + for pool, n in zip(pools, ns): + result.append(pool[index % n]) + index //= n + + return tuple(reversed(result)) + + +def nth_permutation(iterable, r, index): + """Equivalent to ``list(permutations(iterable, r))[index]``` + + The subsequences of *iterable* that are of length *r* where order is + important can be ordered lexicographically. :func:`nth_permutation` + computes the subsequence at sort position *index* directly, without + computing the previous subsequences. + + >>> nth_permutation('ghijk', 2, 5) + ('h', 'i') + + ``ValueError`` will be raised If *r* is negative or greater than the length + of *iterable*. + ``IndexError`` will be raised if the given *index* is invalid. + """ + pool = list(iterable) + n = len(pool) + + if r is None or r == n: + r, c = n, factorial(n) + elif not 0 <= r < n: + raise ValueError + else: + c = factorial(n) // factorial(n - r) + + if index < 0: + index += c + + if not 0 <= index < c: + raise IndexError + + if c == 0: + return tuple() + + result = [0] * r + q = index * factorial(n) // c if r < n else index + for d in range(1, n + 1): + q, i = divmod(q, d) + if 0 <= n - d < r: + result[n - d] = i + if q == 0: + break + + return tuple(map(pool.pop, result)) + + +def nth_combination_with_replacement(iterable, r, index): + """Equivalent to + ``list(combinations_with_replacement(iterable, r))[index]``. + + + The subsequences with repetition of *iterable* that are of length *r* can + be ordered lexicographically. :func:`nth_combination_with_replacement` + computes the subsequence at sort position *index* directly, without + computing the previous subsequences with replacement. + + >>> nth_combination_with_replacement(range(5), 3, 5) + (0, 1, 1) + + ``ValueError`` will be raised If *r* is negative or greater than the length + of *iterable*. + ``IndexError`` will be raised if the given *index* is invalid. + """ + pool = tuple(iterable) + n = len(pool) + if (r < 0) or (r > n): + raise ValueError + + c = factorial(n + r - 1) // (factorial(r) * factorial(n - 1)) + + if index < 0: + index += c + + if (index < 0) or (index >= c): + raise IndexError + + result = [] + i = 0 + while r: + r -= 1 + while n >= 0: + num_combs = factorial(n + r - 1) // ( + factorial(r) * factorial(n - 1) + ) + if index < num_combs: + break + n -= 1 + i += 1 + index -= num_combs + result.append(pool[i]) + + return tuple(result) + + +def value_chain(*args): + """Yield all arguments passed to the function in the same order in which + they were passed. If an argument itself is iterable then iterate over its + values. + + >>> list(value_chain(1, 2, 3, [4, 5, 6])) + [1, 2, 3, 4, 5, 6] + + Binary and text strings are not considered iterable and are emitted + as-is: + + >>> list(value_chain('12', '34', ['56', '78'])) + ['12', '34', '56', '78'] + + + Multiple levels of nesting are not flattened. + + """ + for value in args: + if isinstance(value, (str, bytes)): + yield value + continue + try: + yield from value + except TypeError: + yield value + + +def product_index(element, *args): + """Equivalent to ``list(product(*args)).index(element)`` + + The products of *args* can be ordered lexicographically. + :func:`product_index` computes the first index of *element* without + computing the previous products. + + >>> product_index([8, 2], range(10), range(5)) + 42 + + ``ValueError`` will be raised if the given *element* isn't in the product + of *args*. + """ + index = 0 + + for x, pool in zip_longest(element, args, fillvalue=_marker): + if x is _marker or pool is _marker: + raise ValueError('element is not a product of args') + + pool = tuple(pool) + index = index * len(pool) + pool.index(x) + + return index + + +def combination_index(element, iterable): + """Equivalent to ``list(combinations(iterable, r)).index(element)`` + + The subsequences of *iterable* that are of length *r* can be ordered + lexicographically. :func:`combination_index` computes the index of the + first *element*, without computing the previous combinations. + + >>> combination_index('adf', 'abcdefg') + 10 + + ``ValueError`` will be raised if the given *element* isn't one of the + combinations of *iterable*. + """ + element = enumerate(element) + k, y = next(element, (None, None)) + if k is None: + return 0 + + indexes = [] + pool = enumerate(iterable) + for n, x in pool: + if x == y: + indexes.append(n) + tmp, y = next(element, (None, None)) + if tmp is None: + break + else: + k = tmp + else: + raise ValueError('element is not a combination of iterable') + + n, _ = last(pool, default=(n, None)) + + # Python versions below 3.8 don't have math.comb + index = 1 + for i, j in enumerate(reversed(indexes), start=1): + j = n - j + if i <= j: + index += factorial(j) // (factorial(i) * factorial(j - i)) + + return factorial(n + 1) // (factorial(k + 1) * factorial(n - k)) - index + + +def combination_with_replacement_index(element, iterable): + """Equivalent to + ``list(combinations_with_replacement(iterable, r)).index(element)`` + + The subsequences with repetition of *iterable* that are of length *r* can + be ordered lexicographically. :func:`combination_with_replacement_index` + computes the index of the first *element*, without computing the previous + combinations with replacement. + + >>> combination_with_replacement_index('adf', 'abcdefg') + 20 + + ``ValueError`` will be raised if the given *element* isn't one of the + combinations with replacement of *iterable*. + """ + element = tuple(element) + l = len(element) + element = enumerate(element) + + k, y = next(element, (None, None)) + if k is None: + return 0 + + indexes = [] + pool = tuple(iterable) + for n, x in enumerate(pool): + while x == y: + indexes.append(n) + tmp, y = next(element, (None, None)) + if tmp is None: + break + else: + k = tmp + if y is None: + break + else: + raise ValueError( + 'element is not a combination with replacment of iterable' + ) + + n = len(pool) + occupations = [0] * n + for p in indexes: + occupations[p] += 1 + + index = 0 + for k in range(1, n): + j = l + n - 1 - k - sum(occupations[:k]) + i = n - k + if i <= j: + index += factorial(j) // (factorial(i) * factorial(j - i)) + + return index + + +def permutation_index(element, iterable): + """Equivalent to ``list(permutations(iterable, r)).index(element)``` + + The subsequences of *iterable* that are of length *r* where order is + important can be ordered lexicographically. :func:`permutation_index` + computes the index of the first *element* directly, without computing + the previous permutations. + + >>> permutation_index([1, 3, 2], range(5)) + 19 + + ``ValueError`` will be raised if the given *element* isn't one of the + permutations of *iterable*. + """ + index = 0 + pool = list(iterable) + for i, x in zip(range(len(pool), -1, -1), element): + r = pool.index(x) + index = index * i + r + del pool[r] + + return index + + +class countable: + """Wrap *iterable* and keep a count of how many items have been consumed. + + The ``items_seen`` attribute starts at ``0`` and increments as the iterable + is consumed: + + >>> iterable = map(str, range(10)) + >>> it = countable(iterable) + >>> it.items_seen + 0 + >>> next(it), next(it) + ('0', '1') + >>> list(it) + ['2', '3', '4', '5', '6', '7', '8', '9'] + >>> it.items_seen + 10 + """ + + def __init__(self, iterable): + self._it = iter(iterable) + self.items_seen = 0 + + def __iter__(self): + return self + + def __next__(self): + item = next(self._it) + self.items_seen += 1 + + return item + + +def chunked_even(iterable, n): + """Break *iterable* into lists of approximately length *n*. + Items are distributed such the lengths of the lists differ by at most + 1 item. + + >>> iterable = [1, 2, 3, 4, 5, 6, 7] + >>> n = 3 + >>> list(chunked_even(iterable, n)) # List lengths: 3, 2, 2 + [[1, 2, 3], [4, 5], [6, 7]] + >>> list(chunked(iterable, n)) # List lengths: 3, 3, 1 + [[1, 2, 3], [4, 5, 6], [7]] + + """ + + len_method = getattr(iterable, '__len__', None) + + if len_method is None: + return _chunked_even_online(iterable, n) + else: + return _chunked_even_finite(iterable, len_method(), n) + + +def _chunked_even_online(iterable, n): + buffer = [] + maxbuf = n + (n - 2) * (n - 1) + for x in iterable: + buffer.append(x) + if len(buffer) == maxbuf: + yield buffer[:n] + buffer = buffer[n:] + yield from _chunked_even_finite(buffer, len(buffer), n) + + +def _chunked_even_finite(iterable, N, n): + if N < 1: + return + + # Lists are either size `full_size <= n` or `partial_size = full_size - 1` + q, r = divmod(N, n) + num_lists = q + (1 if r > 0 else 0) + q, r = divmod(N, num_lists) + full_size = q + (1 if r > 0 else 0) + partial_size = full_size - 1 + num_full = N - partial_size * num_lists + num_partial = num_lists - num_full + + # Yield num_full lists of full_size + partial_start_idx = num_full * full_size + if full_size > 0: + for i in range(0, partial_start_idx, full_size): + yield list(islice(iterable, i, i + full_size)) + + # Yield num_partial lists of partial_size + if partial_size > 0: + for i in range( + partial_start_idx, + partial_start_idx + (num_partial * partial_size), + partial_size, + ): + yield list(islice(iterable, i, i + partial_size)) + + +def zip_broadcast(*objects, scalar_types=(str, bytes), strict=False): + """A version of :func:`zip` that "broadcasts" any scalar + (i.e., non-iterable) items into output tuples. + + >>> iterable_1 = [1, 2, 3] + >>> iterable_2 = ['a', 'b', 'c'] + >>> scalar = '_' + >>> list(zip_broadcast(iterable_1, iterable_2, scalar)) + [(1, 'a', '_'), (2, 'b', '_'), (3, 'c', '_')] + + The *scalar_types* keyword argument determines what types are considered + scalar. It is set to ``(str, bytes)`` by default. Set it to ``None`` to + treat strings and byte strings as iterable: + + >>> list(zip_broadcast('abc', 0, 'xyz', scalar_types=None)) + [('a', 0, 'x'), ('b', 0, 'y'), ('c', 0, 'z')] + + If the *strict* keyword argument is ``True``, then + ``UnequalIterablesError`` will be raised if any of the iterables have + different lengths. + """ + + def is_scalar(obj): + if scalar_types and isinstance(obj, scalar_types): + return True + try: + iter(obj) + except TypeError: + return True + else: + return False + + size = len(objects) + if not size: + return + + new_item = [None] * size + iterables, iterable_positions = [], [] + for i, obj in enumerate(objects): + if is_scalar(obj): + new_item[i] = obj + else: + iterables.append(iter(obj)) + iterable_positions.append(i) + + if not iterables: + yield tuple(objects) + return + + zipper = _zip_equal if strict else zip + for item in zipper(*iterables): + for i, new_item[i] in zip(iterable_positions, item): + pass + yield tuple(new_item) + + +def unique_in_window(iterable, n, key=None): + """Yield the items from *iterable* that haven't been seen recently. + *n* is the size of the lookback window. + + >>> iterable = [0, 1, 0, 2, 3, 0] + >>> n = 3 + >>> list(unique_in_window(iterable, n)) + [0, 1, 2, 3, 0] + + The *key* function, if provided, will be used to determine uniqueness: + + >>> list(unique_in_window('abAcda', 3, key=lambda x: x.lower())) + ['a', 'b', 'c', 'd', 'a'] + + The items in *iterable* must be hashable. + + """ + if n <= 0: + raise ValueError('n must be greater than 0') + + window = deque(maxlen=n) + counts = defaultdict(int) + use_key = key is not None + + for item in iterable: + if len(window) == n: + to_discard = window[0] + if counts[to_discard] == 1: + del counts[to_discard] + else: + counts[to_discard] -= 1 + + k = key(item) if use_key else item + if k not in counts: + yield item + counts[k] += 1 + window.append(k) + + +def duplicates_everseen(iterable, key=None): + """Yield duplicate elements after their first appearance. + + >>> list(duplicates_everseen('mississippi')) + ['s', 'i', 's', 's', 'i', 'p', 'i'] + >>> list(duplicates_everseen('AaaBbbCccAaa', str.lower)) + ['a', 'a', 'b', 'b', 'c', 'c', 'A', 'a', 'a'] + + This function is analagous to :func:`unique_everseen` and is subject to + the same performance considerations. + + """ + seen_set = set() + seen_list = [] + use_key = key is not None + + for element in iterable: + k = key(element) if use_key else element + try: + if k not in seen_set: + seen_set.add(k) + else: + yield element + except TypeError: + if k not in seen_list: + seen_list.append(k) + else: + yield element + + +def duplicates_justseen(iterable, key=None): + """Yields serially-duplicate elements after their first appearance. + + >>> list(duplicates_justseen('mississippi')) + ['s', 's', 'p'] + >>> list(duplicates_justseen('AaaBbbCccAaa', str.lower)) + ['a', 'a', 'b', 'b', 'c', 'c', 'a', 'a'] + + This function is analagous to :func:`unique_justseen`. + + """ + return flatten(g for _, g in groupby(iterable, key) for _ in g) + + +def minmax(iterable_or_value, *others, key=None, default=_marker): + """Returns both the smallest and largest items in an iterable + or the largest of two or more arguments. + + >>> minmax([3, 1, 5]) + (1, 5) + + >>> minmax(4, 2, 6) + (2, 6) + + If a *key* function is provided, it will be used to transform the input + items for comparison. + + >>> minmax([5, 30], key=str) # '30' sorts before '5' + (30, 5) + + If a *default* value is provided, it will be returned if there are no + input items. + + >>> minmax([], default=(0, 0)) + (0, 0) + + Otherwise ``ValueError`` is raised. + + This function is based on the + `recipe `__ by + Raymond Hettinger and takes care to minimize the number of comparisons + performed. + """ + iterable = (iterable_or_value, *others) if others else iterable_or_value + + it = iter(iterable) + + try: + lo = hi = next(it) + except StopIteration as e: + if default is _marker: + raise ValueError( + '`minmax()` argument is an empty iterable. ' + 'Provide a `default` value to suppress this error.' + ) from e + return default + + # Different branches depending on the presence of key. This saves a lot + # of unimportant copies which would slow the "key=None" branch + # significantly down. + if key is None: + for x, y in zip_longest(it, it, fillvalue=lo): + if y < x: + x, y = y, x + if x < lo: + lo = x + if hi < y: + hi = y + + else: + lo_key = hi_key = key(lo) + + for x, y in zip_longest(it, it, fillvalue=lo): + x_key, y_key = key(x), key(y) + + if y_key < x_key: + x, y, x_key, y_key = y, x, y_key, x_key + if x_key < lo_key: + lo, lo_key = x, x_key + if hi_key < y_key: + hi, hi_key = y, y_key + + return lo, hi + + +def constrained_batches( + iterable, max_size, max_count=None, get_len=len, strict=True +): + """Yield batches of items from *iterable* with a combined size limited by + *max_size*. + + >>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1'] + >>> list(constrained_batches(iterable, 10)) + [(b'12345', b'123'), (b'12345678', b'1', b'1'), (b'12', b'1')] + + If a *max_count* is supplied, the number of items per batch is also + limited: + + >>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1'] + >>> list(constrained_batches(iterable, 10, max_count = 2)) + [(b'12345', b'123'), (b'12345678', b'1'), (b'1', b'12'), (b'1',)] + + If a *get_len* function is supplied, use that instead of :func:`len` to + determine item size. + + If *strict* is ``True``, raise ``ValueError`` if any single item is bigger + than *max_size*. Otherwise, allow single items to exceed *max_size*. + """ + if max_size <= 0: + raise ValueError('maximum size must be greater than zero') + + batch = [] + batch_size = 0 + batch_count = 0 + for item in iterable: + item_len = get_len(item) + if strict and item_len > max_size: + raise ValueError('item size exceeds maximum size') + + reached_count = batch_count == max_count + reached_size = item_len + batch_size > max_size + if batch_count and (reached_size or reached_count): + yield tuple(batch) + batch.clear() + batch_size = 0 + batch_count = 0 + + batch.append(item) + batch_size += item_len + batch_count += 1 + + if batch: + yield tuple(batch) + + +def gray_product(*iterables): + """Like :func:`itertools.product`, but return tuples in an order such + that only one element in the generated tuple changes from one iteration + to the next. + + >>> list(gray_product('AB','CD')) + [('A', 'C'), ('B', 'C'), ('B', 'D'), ('A', 'D')] + + This function consumes all of the input iterables before producing output. + If any of the input iterables have fewer than two items, ``ValueError`` + is raised. + + For information on the algorithm, see + `this section `__ + of Donald Knuth's *The Art of Computer Programming*. + """ + all_iterables = tuple(tuple(x) for x in iterables) + iterable_count = len(all_iterables) + for iterable in all_iterables: + if len(iterable) < 2: + raise ValueError("each iterable must have two or more items") + + # This is based on "Algorithm H" from section 7.2.1.1, page 20. + # a holds the indexes of the source iterables for the n-tuple to be yielded + # f is the array of "focus pointers" + # o is the array of "directions" + a = [0] * iterable_count + f = list(range(iterable_count + 1)) + o = [1] * iterable_count + while True: + yield tuple(all_iterables[i][a[i]] for i in range(iterable_count)) + j = f[0] + f[0] = 0 + if j == iterable_count: + break + a[j] = a[j] + o[j] + if a[j] == 0 or a[j] == len(all_iterables[j]) - 1: + o[j] = -o[j] + f[j] = f[j + 1] + f[j + 1] = j + 1 + + +def partial_product(*iterables): + """Yields tuples containing one item from each iterator, with subsequent + tuples changing a single item at a time by advancing each iterator until it + is exhausted. This sequence guarantees every value in each iterable is + output at least once without generating all possible combinations. + + This may be useful, for example, when testing an expensive function. + + >>> list(partial_product('AB', 'C', 'DEF')) + [('A', 'C', 'D'), ('B', 'C', 'D'), ('B', 'C', 'E'), ('B', 'C', 'F')] + """ + + iterators = list(map(iter, iterables)) + + try: + prod = [next(it) for it in iterators] + except StopIteration: + return + yield tuple(prod) + + for i, it in enumerate(iterators): + for prod[i] in it: + yield tuple(prod) + + +def takewhile_inclusive(predicate, iterable): + """A variant of :func:`takewhile` that yields one additional element. + + >>> list(takewhile_inclusive(lambda x: x < 5, [1, 4, 6, 4, 1])) + [1, 4, 6] + + :func:`takewhile` would return ``[1, 4]``. + """ + for x in iterable: + if predicate(x): + yield x + else: + yield x + break + + +def outer_product(func, xs, ys, *args, **kwargs): + """A generalized outer product that applies a binary function to all + pairs of items. Returns a 2D matrix with ``len(xs)`` rows and ``len(ys)`` + columns. + Also accepts ``*args`` and ``**kwargs`` that are passed to ``func``. + + Multiplication table: + + >>> list(outer_product(mul, range(1, 4), range(1, 6))) + [(1, 2, 3, 4, 5), (2, 4, 6, 8, 10), (3, 6, 9, 12, 15)] + + Cross tabulation: + + >>> xs = ['A', 'B', 'A', 'A', 'B', 'B', 'A', 'A', 'B', 'B'] + >>> ys = ['X', 'X', 'X', 'Y', 'Z', 'Z', 'Y', 'Y', 'Z', 'Z'] + >>> rows = list(zip(xs, ys)) + >>> count_rows = lambda x, y: rows.count((x, y)) + >>> list(outer_product(count_rows, sorted(set(xs)), sorted(set(ys)))) + [(2, 3, 0), (1, 0, 4)] + + Usage with ``*args`` and ``**kwargs``: + + >>> animals = ['cat', 'wolf', 'mouse'] + >>> list(outer_product(min, animals, animals, key=len)) + [('cat', 'cat', 'cat'), ('cat', 'wolf', 'wolf'), ('cat', 'wolf', 'mouse')] + """ + ys = tuple(ys) + return batched( + starmap(lambda x, y: func(x, y, *args, **kwargs), product(xs, ys)), + n=len(ys), + )