|
""" |
|
Linear algebra |
|
-------------- |
|
|
|
Linear equations |
|
................ |
|
|
|
Basic linear algebra is implemented; you can for example solve the linear |
|
equation system:: |
|
|
|
x + 2*y = -10 |
|
3*x + 4*y = 10 |
|
|
|
using ``lu_solve``:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.pretty = False |
|
>>> A = matrix([[1, 2], [3, 4]]) |
|
>>> b = matrix([-10, 10]) |
|
>>> x = lu_solve(A, b) |
|
>>> x |
|
matrix( |
|
[['30.0'], |
|
['-20.0']]) |
|
|
|
If you don't trust the result, use ``residual`` to calculate the residual ||A*x-b||:: |
|
|
|
>>> residual(A, x, b) |
|
matrix( |
|
[['3.46944695195361e-18'], |
|
['3.46944695195361e-18']]) |
|
>>> str(eps) |
|
'2.22044604925031e-16' |
|
|
|
As you can see, the solution is quite accurate. The error is caused by the |
|
inaccuracy of the internal floating point arithmetic. Though, it's even smaller |
|
than the current machine epsilon, which basically means you can trust the |
|
result. |
|
|
|
If you need more speed, use NumPy, or ``fp.lu_solve`` for a floating-point computation. |
|
|
|
>>> fp.lu_solve(A, b) # doctest: +ELLIPSIS |
|
matrix(...) |
|
|
|
``lu_solve`` accepts overdetermined systems. It is usually not possible to solve |
|
such systems, so the residual is minimized instead. Internally this is done |
|
using Cholesky decomposition to compute a least squares approximation. This means |
|
that that ``lu_solve`` will square the errors. If you can't afford this, use |
|
``qr_solve`` instead. It is twice as slow but more accurate, and it calculates |
|
the residual automatically. |
|
|
|
|
|
Matrix factorization |
|
.................... |
|
|
|
The function ``lu`` computes an explicit LU factorization of a matrix:: |
|
|
|
>>> P, L, U = lu(matrix([[0,2,3],[4,5,6],[7,8,9]])) |
|
>>> print(P) |
|
[0.0 0.0 1.0] |
|
[1.0 0.0 0.0] |
|
[0.0 1.0 0.0] |
|
>>> print(L) |
|
[ 1.0 0.0 0.0] |
|
[ 0.0 1.0 0.0] |
|
[0.571428571428571 0.214285714285714 1.0] |
|
>>> print(U) |
|
[7.0 8.0 9.0] |
|
[0.0 2.0 3.0] |
|
[0.0 0.0 0.214285714285714] |
|
>>> print(P.T*L*U) |
|
[0.0 2.0 3.0] |
|
[4.0 5.0 6.0] |
|
[7.0 8.0 9.0] |
|
|
|
Interval matrices |
|
----------------- |
|
|
|
Matrices may contain interval elements. This allows one to perform |
|
basic linear algebra operations such as matrix multiplication |
|
and equation solving with rigorous error bounds:: |
|
|
|
>>> a = iv.matrix([['0.1','0.3','1.0'], |
|
... ['7.1','5.5','4.8'], |
|
... ['3.2','4.4','5.6']]) |
|
>>> |
|
>>> b = iv.matrix(['4','0.6','0.5']) |
|
>>> c = iv.lu_solve(a, b) |
|
>>> print(c) |
|
[ [5.2582327113062568605927528666, 5.25823271130625686059275702219]] |
|
[[-13.1550493962678375411635581388, -13.1550493962678375411635540152]] |
|
[ [7.42069154774972557628979076189, 7.42069154774972557628979190734]] |
|
>>> print(a*c) |
|
[ [3.99999999999999999999999844904, 4.00000000000000000000000155096]] |
|
[[0.599999999999999999999968898009, 0.600000000000000000000031763736]] |
|
[[0.499999999999999999999979320485, 0.500000000000000000000020679515]] |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
from copy import copy |
|
|
|
from ..libmp.backend import xrange |
|
|
|
class LinearAlgebraMethods(object): |
|
|
|
def LU_decomp(ctx, A, overwrite=False, use_cache=True): |
|
""" |
|
LU-factorization of a n*n matrix using the Gauss algorithm. |
|
Returns L and U in one matrix and the pivot indices. |
|
|
|
Use overwrite to specify whether A will be overwritten with L and U. |
|
""" |
|
if not A.rows == A.cols: |
|
raise ValueError('need n*n matrix') |
|
|
|
if use_cache and isinstance(A, ctx.matrix) and A._LU: |
|
return A._LU |
|
if not overwrite: |
|
orig = A |
|
A = A.copy() |
|
tol = ctx.absmin(ctx.mnorm(A,1) * ctx.eps) |
|
n = A.rows |
|
p = [None]*(n - 1) |
|
for j in xrange(n - 1): |
|
|
|
biggest = 0 |
|
for k in xrange(j, n): |
|
s = ctx.fsum([ctx.absmin(A[k,l]) for l in xrange(j, n)]) |
|
if ctx.absmin(s) <= tol: |
|
raise ZeroDivisionError('matrix is numerically singular') |
|
current = 1/s * ctx.absmin(A[k,j]) |
|
if current > biggest: |
|
biggest = current |
|
p[j] = k |
|
|
|
ctx.swap_row(A, j, p[j]) |
|
if ctx.absmin(A[j,j]) <= tol: |
|
raise ZeroDivisionError('matrix is numerically singular') |
|
|
|
for i in xrange(j + 1, n): |
|
A[i,j] /= A[j,j] |
|
for k in xrange(j + 1, n): |
|
A[i,k] -= A[i,j]*A[j,k] |
|
if ctx.absmin(A[n - 1,n - 1]) <= tol: |
|
raise ZeroDivisionError('matrix is numerically singular') |
|
|
|
if not overwrite and isinstance(orig, ctx.matrix): |
|
orig._LU = (A, p) |
|
return A, p |
|
|
|
def L_solve(ctx, L, b, p=None): |
|
""" |
|
Solve the lower part of a LU factorized matrix for y. |
|
""" |
|
if L.rows != L.cols: |
|
raise RuntimeError("need n*n matrix") |
|
n = L.rows |
|
if len(b) != n: |
|
raise ValueError("Value should be equal to n") |
|
b = copy(b) |
|
if p: |
|
for k in xrange(0, len(p)): |
|
ctx.swap_row(b, k, p[k]) |
|
|
|
for i in xrange(1, n): |
|
for j in xrange(i): |
|
b[i] -= L[i,j] * b[j] |
|
return b |
|
|
|
def U_solve(ctx, U, y): |
|
""" |
|
Solve the upper part of a LU factorized matrix for x. |
|
""" |
|
if U.rows != U.cols: |
|
raise RuntimeError("need n*n matrix") |
|
n = U.rows |
|
if len(y) != n: |
|
raise ValueError("Value should be equal to n") |
|
x = copy(y) |
|
for i in xrange(n - 1, -1, -1): |
|
for j in xrange(i + 1, n): |
|
x[i] -= U[i,j] * x[j] |
|
x[i] /= U[i,i] |
|
return x |
|
|
|
def lu_solve(ctx, A, b, **kwargs): |
|
""" |
|
Ax = b => x |
|
|
|
Solve a determined or overdetermined linear equations system. |
|
Fast LU decomposition is used, which is less accurate than QR decomposition |
|
(especially for overdetermined systems), but it's twice as efficient. |
|
Use qr_solve if you want more precision or have to solve a very ill- |
|
conditioned system. |
|
|
|
If you specify real=True, it does not check for overdeterminded complex |
|
systems. |
|
""" |
|
prec = ctx.prec |
|
try: |
|
ctx.prec += 10 |
|
|
|
A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy() |
|
if A.rows < A.cols: |
|
raise ValueError('cannot solve underdetermined system') |
|
if A.rows > A.cols: |
|
|
|
|
|
AH = A.H |
|
A = AH * A |
|
b = AH * b |
|
if (kwargs.get('real', False) or |
|
not sum(type(i) is ctx.mpc for i in A)): |
|
|
|
x = ctx.cholesky_solve(A, b) |
|
else: |
|
x = ctx.lu_solve(A, b) |
|
else: |
|
|
|
A, p = ctx.LU_decomp(A) |
|
b = ctx.L_solve(A, b, p) |
|
x = ctx.U_solve(A, b) |
|
finally: |
|
ctx.prec = prec |
|
return x |
|
|
|
def improve_solution(ctx, A, x, b, maxsteps=1): |
|
""" |
|
Improve a solution to a linear equation system iteratively. |
|
|
|
This re-uses the LU decomposition and is thus cheap. |
|
Usually 3 up to 4 iterations are giving the maximal improvement. |
|
""" |
|
if A.rows != A.cols: |
|
raise RuntimeError("need n*n matrix") |
|
for _ in xrange(maxsteps): |
|
r = ctx.residual(A, x, b) |
|
if ctx.norm(r, 2) < 10*ctx.eps: |
|
break |
|
|
|
dx = ctx.lu_solve(A, -r) |
|
x += dx |
|
return x |
|
|
|
def lu(ctx, A): |
|
""" |
|
A -> P, L, U |
|
|
|
LU factorisation of a square matrix A. L is the lower, U the upper part. |
|
P is the permutation matrix indicating the row swaps. |
|
|
|
P*A = L*U |
|
|
|
If you need efficiency, use the low-level method LU_decomp instead, it's |
|
much more memory efficient. |
|
""" |
|
|
|
A, p = ctx.LU_decomp(A) |
|
n = A.rows |
|
L = ctx.matrix(n) |
|
U = ctx.matrix(n) |
|
for i in xrange(n): |
|
for j in xrange(n): |
|
if i > j: |
|
L[i,j] = A[i,j] |
|
elif i == j: |
|
L[i,j] = 1 |
|
U[i,j] = A[i,j] |
|
else: |
|
U[i,j] = A[i,j] |
|
|
|
P = ctx.eye(n) |
|
for k in xrange(len(p)): |
|
ctx.swap_row(P, k, p[k]) |
|
return P, L, U |
|
|
|
def unitvector(ctx, n, i): |
|
""" |
|
Return the i-th n-dimensional unit vector. |
|
""" |
|
assert 0 < i <= n, 'this unit vector does not exist' |
|
return [ctx.zero]*(i-1) + [ctx.one] + [ctx.zero]*(n-i) |
|
|
|
def inverse(ctx, A, **kwargs): |
|
""" |
|
Calculate the inverse of a matrix. |
|
|
|
If you want to solve an equation system Ax = b, it's recommended to use |
|
solve(A, b) instead, it's about 3 times more efficient. |
|
""" |
|
prec = ctx.prec |
|
try: |
|
ctx.prec += 10 |
|
|
|
A = ctx.matrix(A, **kwargs).copy() |
|
n = A.rows |
|
|
|
A, p = ctx.LU_decomp(A) |
|
cols = [] |
|
|
|
for i in xrange(1, n + 1): |
|
e = ctx.unitvector(n, i) |
|
y = ctx.L_solve(A, e, p) |
|
cols.append(ctx.U_solve(A, y)) |
|
|
|
inv = [] |
|
for i in xrange(n): |
|
row = [] |
|
for j in xrange(n): |
|
row.append(cols[j][i]) |
|
inv.append(row) |
|
result = ctx.matrix(inv, **kwargs) |
|
finally: |
|
ctx.prec = prec |
|
return result |
|
|
|
def householder(ctx, A): |
|
""" |
|
(A|b) -> H, p, x, res |
|
|
|
(A|b) is the coefficient matrix with left hand side of an optionally |
|
overdetermined linear equation system. |
|
H and p contain all information about the transformation matrices. |
|
x is the solution, res the residual. |
|
""" |
|
if not isinstance(A, ctx.matrix): |
|
raise TypeError("A should be a type of ctx.matrix") |
|
m = A.rows |
|
n = A.cols |
|
if m < n - 1: |
|
raise RuntimeError("Columns should not be less than rows") |
|
|
|
p = [] |
|
for j in xrange(0, n - 1): |
|
s = ctx.fsum(abs(A[i,j])**2 for i in xrange(j, m)) |
|
if not abs(s) > ctx.eps: |
|
raise ValueError('matrix is numerically singular') |
|
p.append(-ctx.sign(ctx.re(A[j,j])) * ctx.sqrt(s)) |
|
kappa = ctx.one / (s - p[j] * A[j,j]) |
|
A[j,j] -= p[j] |
|
for k in xrange(j+1, n): |
|
y = ctx.fsum(ctx.conj(A[i,j]) * A[i,k] for i in xrange(j, m)) * kappa |
|
for i in xrange(j, m): |
|
A[i,k] -= A[i,j] * y |
|
|
|
x = [A[i,n - 1] for i in xrange(n - 1)] |
|
for i in xrange(n - 2, -1, -1): |
|
x[i] -= ctx.fsum(A[i,j] * x[j] for j in xrange(i + 1, n - 1)) |
|
x[i] /= p[i] |
|
|
|
if not m == n - 1: |
|
r = [A[m-1-i, n-1] for i in xrange(m - n + 1)] |
|
else: |
|
|
|
r = [0]*m |
|
return A, p, x, r |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def residual(ctx, A, x, b, **kwargs): |
|
""" |
|
Calculate the residual of a solution to a linear equation system. |
|
|
|
r = A*x - b for A*x = b |
|
""" |
|
oldprec = ctx.prec |
|
try: |
|
ctx.prec *= 2 |
|
A, x, b = ctx.matrix(A, **kwargs), ctx.matrix(x, **kwargs), ctx.matrix(b, **kwargs) |
|
return A*x - b |
|
finally: |
|
ctx.prec = oldprec |
|
|
|
def qr_solve(ctx, A, b, norm=None, **kwargs): |
|
""" |
|
Ax = b => x, ||Ax - b|| |
|
|
|
Solve a determined or overdetermined linear equations system and |
|
calculate the norm of the residual (error). |
|
QR decomposition using Householder factorization is applied, which gives very |
|
accurate results even for ill-conditioned matrices. qr_solve is twice as |
|
efficient. |
|
""" |
|
if norm is None: |
|
norm = ctx.norm |
|
prec = ctx.prec |
|
try: |
|
ctx.prec += 10 |
|
|
|
A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy() |
|
if A.rows < A.cols: |
|
raise ValueError('cannot solve underdetermined system') |
|
H, p, x, r = ctx.householder(ctx.extend(A, b)) |
|
res = ctx.norm(r) |
|
|
|
if res == 0: |
|
res = ctx.norm(ctx.residual(A, x, b)) |
|
return ctx.matrix(x, **kwargs), res |
|
finally: |
|
ctx.prec = prec |
|
|
|
def cholesky(ctx, A, tol=None): |
|
r""" |
|
Cholesky decomposition of a symmetric positive-definite matrix `A`. |
|
Returns a lower triangular matrix `L` such that `A = L \times L^T`. |
|
More generally, for a complex Hermitian positive-definite matrix, |
|
a Cholesky decomposition satisfying `A = L \times L^H` is returned. |
|
|
|
The Cholesky decomposition can be used to solve linear equation |
|
systems twice as efficiently as LU decomposition, or to |
|
test whether `A` is positive-definite. |
|
|
|
The optional parameter ``tol`` determines the tolerance for |
|
verifying positive-definiteness. |
|
|
|
**Examples** |
|
|
|
Cholesky decomposition of a positive-definite symmetric matrix:: |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 25; mp.pretty = True |
|
>>> A = eye(3) + hilbert(3) |
|
>>> nprint(A) |
|
[ 2.0 0.5 0.333333] |
|
[ 0.5 1.33333 0.25] |
|
[0.333333 0.25 1.2] |
|
>>> L = cholesky(A) |
|
>>> nprint(L) |
|
[ 1.41421 0.0 0.0] |
|
[0.353553 1.09924 0.0] |
|
[0.235702 0.15162 1.05899] |
|
>>> chop(A - L*L.T) |
|
[0.0 0.0 0.0] |
|
[0.0 0.0 0.0] |
|
[0.0 0.0 0.0] |
|
|
|
Cholesky decomposition of a Hermitian matrix:: |
|
|
|
>>> A = eye(3) + matrix([[0,0.25j,-0.5j],[-0.25j,0,0],[0.5j,0,0]]) |
|
>>> L = cholesky(A) |
|
>>> nprint(L) |
|
[ 1.0 0.0 0.0] |
|
[(0.0 - 0.25j) (0.968246 + 0.0j) 0.0] |
|
[ (0.0 + 0.5j) (0.129099 + 0.0j) (0.856349 + 0.0j)] |
|
>>> chop(A - L*L.H) |
|
[0.0 0.0 0.0] |
|
[0.0 0.0 0.0] |
|
[0.0 0.0 0.0] |
|
|
|
Attempted Cholesky decomposition of a matrix that is not positive |
|
definite:: |
|
|
|
>>> A = -eye(3) + hilbert(3) |
|
>>> L = cholesky(A) |
|
Traceback (most recent call last): |
|
... |
|
ValueError: matrix is not positive-definite |
|
|
|
**References** |
|
|
|
1. [Wikipedia]_ http://en.wikipedia.org/wiki/Cholesky_decomposition |
|
|
|
""" |
|
if not isinstance(A, ctx.matrix): |
|
raise RuntimeError("A should be a type of ctx.matrix") |
|
if not A.rows == A.cols: |
|
raise ValueError('need n*n matrix') |
|
if tol is None: |
|
tol = +ctx.eps |
|
n = A.rows |
|
L = ctx.matrix(n) |
|
for j in xrange(n): |
|
c = ctx.re(A[j,j]) |
|
if abs(c-A[j,j]) > tol: |
|
raise ValueError('matrix is not Hermitian') |
|
s = c - ctx.fsum((L[j,k] for k in xrange(j)), |
|
absolute=True, squared=True) |
|
if s < tol: |
|
raise ValueError('matrix is not positive-definite') |
|
L[j,j] = ctx.sqrt(s) |
|
for i in xrange(j, n): |
|
it1 = (L[i,k] for k in xrange(j)) |
|
it2 = (L[j,k] for k in xrange(j)) |
|
t = ctx.fdot(it1, it2, conjugate=True) |
|
L[i,j] = (A[i,j] - t) / L[j,j] |
|
return L |
|
|
|
def cholesky_solve(ctx, A, b, **kwargs): |
|
""" |
|
Ax = b => x |
|
|
|
Solve a symmetric positive-definite linear equation system. |
|
This is twice as efficient as lu_solve. |
|
|
|
Typical use cases: |
|
* A.T*A |
|
* Hessian matrix |
|
* differential equations |
|
""" |
|
prec = ctx.prec |
|
try: |
|
ctx.prec += 10 |
|
|
|
A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy() |
|
if A.rows != A.cols: |
|
raise ValueError('can only solve determined system') |
|
|
|
L = ctx.cholesky(A) |
|
|
|
n = L.rows |
|
if len(b) != n: |
|
raise ValueError("Value should be equal to n") |
|
for i in xrange(n): |
|
b[i] -= ctx.fsum(L[i,j] * b[j] for j in xrange(i)) |
|
b[i] /= L[i,i] |
|
x = ctx.U_solve(L.T, b) |
|
return x |
|
finally: |
|
ctx.prec = prec |
|
|
|
def det(ctx, A): |
|
""" |
|
Calculate the determinant of a matrix. |
|
""" |
|
prec = ctx.prec |
|
try: |
|
|
|
A = ctx.matrix(A).copy() |
|
|
|
try: |
|
R, p = ctx.LU_decomp(A) |
|
except ZeroDivisionError: |
|
return 0 |
|
z = 1 |
|
for i, e in enumerate(p): |
|
if i != e: |
|
z *= -1 |
|
for i in xrange(A.rows): |
|
z *= R[i,i] |
|
return z |
|
finally: |
|
ctx.prec = prec |
|
|
|
def cond(ctx, A, norm=None): |
|
""" |
|
Calculate the condition number of a matrix using a specified matrix norm. |
|
|
|
The condition number estimates the sensitivity of a matrix to errors. |
|
Example: small input errors for ill-conditioned coefficient matrices |
|
alter the solution of the system dramatically. |
|
|
|
For ill-conditioned matrices it's recommended to use qr_solve() instead |
|
of lu_solve(). This does not help with input errors however, it just avoids |
|
to add additional errors. |
|
|
|
Definition: cond(A) = ||A|| * ||A**-1|| |
|
""" |
|
if norm is None: |
|
norm = lambda x: ctx.mnorm(x,1) |
|
return norm(A) * norm(ctx.inverse(A)) |
|
|
|
def lu_solve_mat(ctx, a, b): |
|
"""Solve a * x = b where a and b are matrices.""" |
|
r = ctx.matrix(a.rows, b.cols) |
|
for i in range(b.cols): |
|
c = ctx.lu_solve(a, b.column(i)) |
|
for j in range(len(c)): |
|
r[j, i] = c[j] |
|
return r |
|
|
|
def qr(ctx, A, mode = 'full', edps = 10): |
|
""" |
|
Compute a QR factorization $A = QR$ where |
|
A is an m x n matrix of real or complex numbers where m >= n |
|
|
|
mode has following meanings: |
|
(1) mode = 'raw' returns two matrixes (A, tau) in the |
|
internal format used by LAPACK |
|
(2) mode = 'skinny' returns the leading n columns of Q |
|
and n rows of R |
|
(3) Any other value returns the leading m columns of Q |
|
and m rows of R |
|
|
|
edps is the increase in mp precision used for calculations |
|
|
|
**Examples** |
|
|
|
>>> from mpmath import * |
|
>>> mp.dps = 15 |
|
>>> mp.pretty = True |
|
>>> A = matrix([[1, 2], [3, 4], [1, 1]]) |
|
>>> Q, R = qr(A) |
|
>>> Q |
|
[-0.301511344577764 0.861640436855329 0.408248290463863] |
|
[-0.904534033733291 -0.123091490979333 -0.408248290463863] |
|
[-0.301511344577764 -0.492365963917331 0.816496580927726] |
|
>>> R |
|
[-3.3166247903554 -4.52267016866645] |
|
[ 0.0 0.738548945875996] |
|
[ 0.0 0.0] |
|
>>> Q * R |
|
[1.0 2.0] |
|
[3.0 4.0] |
|
[1.0 1.0] |
|
>>> chop(Q.T * Q) |
|
[1.0 0.0 0.0] |
|
[0.0 1.0 0.0] |
|
[0.0 0.0 1.0] |
|
>>> B = matrix([[1+0j, 2-3j], [3+j, 4+5j]]) |
|
>>> Q, R = qr(B) |
|
>>> nprint(Q) |
|
[ (-0.301511 + 0.0j) (0.0695795 - 0.95092j)] |
|
[(-0.904534 - 0.301511j) (-0.115966 + 0.278318j)] |
|
>>> nprint(R) |
|
[(-3.31662 + 0.0j) (-5.72872 - 2.41209j)] |
|
[ 0.0 (3.91965 + 0.0j)] |
|
>>> Q * R |
|
[(1.0 + 0.0j) (2.0 - 3.0j)] |
|
[(3.0 + 1.0j) (4.0 + 5.0j)] |
|
>>> chop(Q.T * Q.conjugate()) |
|
[1.0 0.0] |
|
[0.0 1.0] |
|
|
|
""" |
|
|
|
|
|
assert isinstance(A, ctx.matrix) |
|
m = A.rows |
|
n = A.cols |
|
assert n >= 0 |
|
assert m >= n |
|
assert edps >= 0 |
|
|
|
|
|
cmplx = any(type(x) is ctx.mpc for x in A) |
|
|
|
|
|
with ctx.extradps(edps): |
|
tau = ctx.matrix(n,1) |
|
A = A.copy() |
|
|
|
|
|
|
|
|
|
if cmplx: |
|
one = ctx.mpc('1.0', '0.0') |
|
zero = ctx.mpc('0.0', '0.0') |
|
rzero = ctx.mpf('0.0') |
|
|
|
|
|
for j in xrange(0, n): |
|
alpha = A[j,j] |
|
alphr = ctx.re(alpha) |
|
alphi = ctx.im(alpha) |
|
|
|
if (m-j) >= 2: |
|
xnorm = ctx.fsum( A[i,j]*ctx.conj(A[i,j]) for i in xrange(j+1, m) ) |
|
xnorm = ctx.re( ctx.sqrt(xnorm) ) |
|
else: |
|
xnorm = rzero |
|
|
|
if (xnorm == rzero) and (alphi == rzero): |
|
tau[j] = zero |
|
continue |
|
|
|
if alphr < rzero: |
|
beta = ctx.sqrt(alphr**2 + alphi**2 + xnorm**2) |
|
else: |
|
beta = -ctx.sqrt(alphr**2 + alphi**2 + xnorm**2) |
|
|
|
tau[j] = ctx.mpc( (beta - alphr) / beta, -alphi / beta ) |
|
t = -ctx.conj(tau[j]) |
|
za = one / (alpha - beta) |
|
|
|
for i in xrange(j+1, m): |
|
A[i,j] *= za |
|
|
|
A[j,j] = one |
|
for k in xrange(j+1, n): |
|
y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j, m)) |
|
temp = t * ctx.conj(y) |
|
for i in xrange(j, m): |
|
A[i,k] += A[i,j] * temp |
|
|
|
A[j,j] = ctx.mpc(beta, '0.0') |
|
else: |
|
one = ctx.mpf('1.0') |
|
zero = ctx.mpf('0.0') |
|
|
|
|
|
for j in xrange(0, n): |
|
alpha = A[j,j] |
|
|
|
if (m-j) > 2: |
|
xnorm = ctx.fsum( (A[i,j])**2 for i in xrange(j+1, m) ) |
|
xnorm = ctx.sqrt(xnorm) |
|
elif (m-j) == 2: |
|
xnorm = abs( A[m-1,j] ) |
|
else: |
|
xnorm = zero |
|
|
|
if xnorm == zero: |
|
tau[j] = zero |
|
continue |
|
|
|
if alpha < zero: |
|
beta = ctx.sqrt(alpha**2 + xnorm**2) |
|
else: |
|
beta = -ctx.sqrt(alpha**2 + xnorm**2) |
|
|
|
tau[j] = (beta - alpha) / beta |
|
t = -tau[j] |
|
da = one / (alpha - beta) |
|
|
|
for i in xrange(j+1, m): |
|
A[i,j] *= da |
|
|
|
A[j,j] = one |
|
for k in xrange(j+1, n): |
|
y = ctx.fsum( A[i,j] * A[i,k] for i in xrange(j, m) ) |
|
temp = t * y |
|
for i in xrange(j,m): |
|
A[i,k] += A[i,j] * temp |
|
|
|
A[j,j] = beta |
|
|
|
|
|
if (mode == 'raw') or (mode == 'RAW'): |
|
return A, tau |
|
|
|
|
|
|
|
|
|
|
|
|
|
R = A.copy() |
|
for j in xrange(0, n): |
|
for i in xrange(j+1, m): |
|
R[i,j] = zero |
|
|
|
|
|
p = m |
|
if (mode == 'skinny') or (mode == 'SKINNY'): |
|
p = n |
|
|
|
|
|
A.cols += (p-n) |
|
for j in xrange(0, p): |
|
A[j,j] = one |
|
for i in xrange(0, j): |
|
A[i,j] = zero |
|
|
|
|
|
for j in xrange(n-1, -1, -1): |
|
t = -tau[j] |
|
A[j,j] += t |
|
|
|
for k in xrange(j+1, p): |
|
if cmplx: |
|
y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j+1, m)) |
|
temp = t * ctx.conj(y) |
|
else: |
|
y = ctx.fsum(A[i,j] * A[i,k] for i in xrange(j+1, m)) |
|
temp = t * y |
|
A[j,k] = temp |
|
for i in xrange(j+1, m): |
|
A[i,k] += A[i,j] * temp |
|
|
|
for i in xrange(j+1, m): |
|
A[i, j] *= t |
|
|
|
return A, R[0:p,0:n] |
|
|
|
|
|
|
|
|
|
|