--- base_model: mlabonne/Marcoro14-7B-slerp license: apache-2.0 tags: - mlabonne/Marcoro14-7B-slerp - dpo - rlhf datasets: - mlabonne/chatml_dpo_pairs --- ![](https://i.imgur.com/CBen22L.jpg) # NeuralMarcoro14-7B This is a DPO fine-tuned version of [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) using the [chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) preference dataset. It improves the performance of the model on Nous benchmark suite and the Open LLM Benchmark. It is currently the best-performing 7B LLM on the Open LLM Leaderboard (08/01/24). You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralMarcoro14-7B-GGUF-Chat) (GGUF Q4_K_M). ## ⚡ Quantized models * **GGUF**: https://huggingface.co/mlabonne/NeuralMarcoro14-7B-GGUF ## 🏆 Evaluation ### Open LLM Leaderboard ![](https://i.imgur.com/Int9P07.png) ![](https://i.imgur.com/70NXUKD.png) ### Nous | Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average| |-------------------------|------:|------:|---------:|-------:|------:| |[NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)| 44.59| 76.17| 65.94| 46.9| 58.4| |[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67| |Change | -0.07| -0.07| +1.79| +1.26| +0.73| ## 🧩 Training hyperparameters **LoRA**: * r=16 * lora_alpha=16 * lora_dropout=0.05 * bias="none" * task_type="CAUSAL_LM" * target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] **Training arguments**: * per_device_train_batch_size=4 * gradient_accumulation_steps=4 * gradient_checkpointing=True * learning_rate=5e-5 * lr_scheduler_type="cosine" * max_steps=200 * optim="paged_adamw_32bit" * warmup_steps=100 **DPOTrainer**: * beta=0.1 * max_prompt_length=1024 * max_length=1536 ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/NeuralMarcoro14-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```