--- license: apache-2.0 tags: - merge - mergekit - lazymergekit base_model: - Intel/neural-chat-7b-v3-3 - openaccess-ai-collective/DPOpenHermes-7B-v2 - fblgit/una-cybertron-7b-v2-bf16 - openchat/openchat-3.5-0106 - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B --- # Darewin-7B Darewin-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) * [openaccess-ai-collective/DPOpenHermes-7B-v2](https://huggingface.co/openaccess-ai-collective/DPOpenHermes-7B-v2) * [fblgit/una-cybertron-7b-v2-bf16](https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16) * [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: Intel/neural-chat-7b-v3-3 parameters: density: 0.6 weight: 0.2 - model: openaccess-ai-collective/DPOpenHermes-7B-v2 parameters: density: 0.6 weight: 0.1 - model: fblgit/una-cybertron-7b-v2-bf16 parameters: density: 0.6 weight: 0.2 - model: openchat/openchat-3.5-0106 parameters: density: 0.6 weight: 0.15 - model: OpenPipe/mistral-ft-optimized-1218 parameters: density: 0.6 weight: 0.25 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: density: 0.6 weight: 0.1 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Darewin-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```