--- license: cc-by-nc-4.0 tags: - merge - lazymergekit dataset: - mlabonne/truthy-dpo-v0.1 - mlabonne/distilabel-intel-orca-dpo-pairs - mlabonne/distilabel-intel-orca-dpo-pairs base_model: - mlabonne/NeuralMonarch-7B language: - en --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/TI7C8F2gk43gmI9U2L0uk.jpeg) # 👑 AlphaMonarch-7B **Update 14/02/24: AlphaMonarch-7B is the new best-performing 7B model on Nous' benchmark suite! 🎉** AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset. It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0) * [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B) * [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), and [Argilla](https://huggingface.co/argilla) for the preference datasets. ## 🔍 Applications This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template. Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling. ## ⚡ Quantized models * **GGUF**: https://huggingface.co/mlabonne/AlphaMonarch-7B-GGUF ## 🏆 Evaluation ### Nous The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |---|---:|---:|---:|---:|---:| | [**AlphaMonarch-7B**](https://huggingface.co/mlabonne/AlphaMonarch-7B) [📄](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | **62.74** | **45.37** | **77.01** | **78.39** | **50.2** | | [NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B) [📄](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | 62.73 | 45.31 | 76.99 | 78.35 | 50.28 | | [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [📄](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 | | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 | | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 | | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [📄](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 | | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [📄](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 | | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [📄](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 | ### Open LLM Leaderboard AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png) ### MT-Bench ``` ########## First turn ########## score model turn gpt-4 1 8.95625 AlphaMonarch-7B 1 8.23750 claude-v1 1 8.15000 gpt-3.5-turbo 1 8.07500 claude-instant-v1 1 7.80000 ########## Second turn ########## score model turn gpt-4 2 9.025000 claude-instant-v1 2 8.012658 gpt-3.5-turbo 2 7.812500 claude-v1 2 7.650000 AlphaMonarch-7B 2 7.618750 ########## Average ########## score model gpt-4 8.990625 gpt-3.5-turbo 7.943750 AlphaMonarch-7B 7.928125 claude-instant-v1 7.905660 claude-v1 7.900000 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/MonarchMonarch-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```