Update README.md
Browse files
README.md
CHANGED
@@ -3,6 +3,8 @@ license: cc-by-nc-4.0
|
|
3 |
tags:
|
4 |
- merge
|
5 |
- lazymergekit
|
|
|
|
|
6 |
dataset:
|
7 |
- mlabonne/truthy-dpo-v0.1
|
8 |
- mlabonne/distilabel-intel-orca-dpo-pairs
|
@@ -17,7 +19,7 @@ language:
|
|
17 |
|
18 |
# π AlphaMonarch-7B
|
19 |
|
20 |
-
**
|
21 |
|
22 |
AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
|
23 |
|
@@ -30,9 +32,9 @@ Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https:
|
|
30 |
|
31 |
## π Applications
|
32 |
|
33 |
-
This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template.
|
34 |
|
35 |
-
|
36 |
|
37 |
## β‘ Quantized models
|
38 |
|
@@ -52,14 +54,15 @@ The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/ll
|
|
52 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
|
53 |
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
|
54 |
| [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [π](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
|
|
|
55 |
| [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [π](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
|
56 |
| [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [π](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
|
57 |
|
58 |
-
###
|
|
|
|
|
59 |
|
60 |
-
AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
|
61 |
|
62 |
-
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
|
63 |
|
64 |
### MT-Bench
|
65 |
|
@@ -68,11 +71,13 @@ AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LL
|
|
68 |
score
|
69 |
model turn
|
70 |
gpt-4 1 8.95625
|
|
|
71 |
AlphaMonarch-7B 1 8.23750
|
72 |
claude-v1 1 8.15000
|
73 |
gpt-3.5-turbo 1 8.07500
|
74 |
claude-instant-v1 1 7.80000
|
75 |
|
|
|
76 |
########## Second turn ##########
|
77 |
score
|
78 |
model turn
|
@@ -81,17 +86,26 @@ claude-instant-v1 2 8.012658
|
|
81 |
gpt-3.5-turbo 2 7.812500
|
82 |
claude-v1 2 7.650000
|
83 |
AlphaMonarch-7B 2 7.618750
|
|
|
84 |
|
85 |
########## Average ##########
|
86 |
score
|
87 |
model
|
88 |
gpt-4 8.990625
|
|
|
89 |
gpt-3.5-turbo 7.943750
|
90 |
AlphaMonarch-7B 7.928125
|
91 |
claude-instant-v1 7.905660
|
92 |
claude-v1 7.900000
|
|
|
93 |
```
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
## π» Usage
|
96 |
|
97 |
```python
|
@@ -101,7 +115,7 @@ from transformers import AutoTokenizer
|
|
101 |
import transformers
|
102 |
import torch
|
103 |
|
104 |
-
model = "mlabonne/
|
105 |
messages = [{"role": "user", "content": "What is a large language model?"}]
|
106 |
|
107 |
tokenizer = AutoTokenizer.from_pretrained(model)
|
|
|
3 |
tags:
|
4 |
- merge
|
5 |
- lazymergekit
|
6 |
+
- dpo
|
7 |
+
- rlhf
|
8 |
dataset:
|
9 |
- mlabonne/truthy-dpo-v0.1
|
10 |
- mlabonne/distilabel-intel-orca-dpo-pairs
|
|
|
19 |
|
20 |
# π AlphaMonarch-7B
|
21 |
|
22 |
+
**tl;dr: AlphaMonarch-7B is a new DPO merge that retains all the reasoning abilities of the very best merges and significantly improves its conversational abilities. Kind of the best of both worlds in a 7B model. π**
|
23 |
|
24 |
AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
|
25 |
|
|
|
32 |
|
33 |
## π Applications
|
34 |
|
35 |
+
This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio).
|
36 |
|
37 |
+
It is one of the very best 7B models in terms of instructing following and reasoning abilities and can be used for conversations, RP, and storytelling. Note that it tends to have a quite formal and sophisticated style, but it can be changed by modifying the prompt.
|
38 |
|
39 |
## β‘ Quantized models
|
40 |
|
|
|
54 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
|
55 |
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
|
56 |
| [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [π](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
|
57 |
+
| [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) [π](https://gist.github.com/mlabonne/0e49d591787185fa5ae92ca5d9d4a1fd) | 62.3 | 45.85 | 77.26 | 76.06 | 50.03 |
|
58 |
| [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [π](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
|
59 |
| [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [π](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
|
60 |
|
61 |
+
### EQ-bench
|
62 |
+
|
63 |
+
AlphaMonarch-7B is the second best-performing 7B model on [EQ-bench](https://eqbench.com/) by Samuel J. Peach.
|
64 |
|
|
|
65 |
|
|
|
66 |
|
67 |
### MT-Bench
|
68 |
|
|
|
71 |
score
|
72 |
model turn
|
73 |
gpt-4 1 8.95625
|
74 |
+
OmniBeagle-7B 1 8.32500
|
75 |
AlphaMonarch-7B 1 8.23750
|
76 |
claude-v1 1 8.15000
|
77 |
gpt-3.5-turbo 1 8.07500
|
78 |
claude-instant-v1 1 7.80000
|
79 |
|
80 |
+
|
81 |
########## Second turn ##########
|
82 |
score
|
83 |
model turn
|
|
|
86 |
gpt-3.5-turbo 2 7.812500
|
87 |
claude-v1 2 7.650000
|
88 |
AlphaMonarch-7B 2 7.618750
|
89 |
+
OmniBeagle-7B 2 7.587500
|
90 |
|
91 |
########## Average ##########
|
92 |
score
|
93 |
model
|
94 |
gpt-4 8.990625
|
95 |
+
OmniBeagle-7B 7.956250
|
96 |
gpt-3.5-turbo 7.943750
|
97 |
AlphaMonarch-7B 7.928125
|
98 |
claude-instant-v1 7.905660
|
99 |
claude-v1 7.900000
|
100 |
+
NeuralBeagle14-7B 7.628125
|
101 |
```
|
102 |
|
103 |
+
### Open LLM Leaderboard
|
104 |
+
|
105 |
+
AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
|
106 |
+
|
107 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
|
108 |
+
|
109 |
## π» Usage
|
110 |
|
111 |
```python
|
|
|
115 |
import transformers
|
116 |
import torch
|
117 |
|
118 |
+
model = "mlabonne/AlphaMonarch-7B"
|
119 |
messages = [{"role": "user", "content": "What is a large language model?"}]
|
120 |
|
121 |
tokenizer = AutoTokenizer.from_pretrained(model)
|