--- language: - multilingual - en - ar - bg - de - el - es - fr - hi - ru - sw - th - tr - ur - vi - zh license: mit datasets: - xnli pipeline_tag: zero-shot-classification widget: - text: Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU candidate_labels: politics, economy, entertainment, environment base_model: intfloat/multilingual-e5-large-instruct model-index: - name: multilingual-e5-large-instruct-xnli results: [] --- # multilingual-e5-large-instruct-xnli This model is a fine-tuned version of [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the XNLI dataset. ## Model description [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 ## How to use the model ### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="mjwong/multilingual-e5-large-instruct-xnli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU" candidate_labels = ["politics", "economy", "entertainment", "environment"] classifier(sequence_to_classify, candidate_labels) ``` If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently: ```python candidate_labels = ["politics", "economy", "entertainment", "environment"] classifier(sequence_to_classify, candidate_labels, multi_label=True) ``` ### With manual PyTorch The model can also be applied on NLI tasks like so: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # device = "cuda:0" or "cpu" device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "mjwong/multilingual-e5-large-instruct-xnli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "But I thought you'd sworn off coffee." hypothesis = "I thought that you vowed to drink more coffee." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Eval results The model was evaluated using the XNLI test sets on 15 languages: English (en), Arabic (ar), Bulgarian (bg), German (de), Greek (el), Spanish (es), French (fr), Hindi (hi), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnam (vi) and Chinese (zh). The metric used is accuracy. |Datasets|en|ar|bg|de|el|es|fr|hi|ru|sw|th|tr|ur|vi|zh| | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.849|0.768|0.803|0.800|0.792|0.809|0.805|0.738|0.782|0.728|0.756|0.766|0.713|0.787|0.785| |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.811|0.711|0.751|0.759|0.746|0.778|0.765|0.685|0.728|0.662|0.705|0.716|0.683|0.736|0.740| |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.867|0.791|0.832|0.825|0.823|0.837|0.824|0.778|0.806|0.749|0.787|0.793|0.738|0.813|0.808| |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.865|0.765|0.811|0.811|0.795|0.823|0.816|0.743|0.785|0.713|0.765|0.774|0.706|0.788|0.787| |[multilingual-e5-large-instruct-xnli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli)|0.864|0.793|0.839|0.821|0.824|0.837|0.823|0.770|0.810|0.744|0.784|0.791|0.716|0.807|0.807| |[multilingual-e5-large-instruct-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli-anli)|0.861|0.780|0.816|0.808|0.806|0.825|0.816|0.758|0.799|0.727|0.775|0.780|0.721|0.787|0.795| The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy. |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3| | :---: | :---: | :---: | :---: | :---: | :---: | |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.835|0.837|0.287|0.276|0.301| |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.814|0.811|0.588|0.437|0.439| |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.865|0.865|0.312|0.316|0.300| |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.863|0.863|0.623|0.456|0.455| |[multilingual-e5-large-instruct-xnli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli)|0.867|0.866|0.341|0.330|0.323| |[multilingual-e5-large-instruct-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli-anli)|0.862|0.862|0.615|0.459|0.462| ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1+cu116 - Datasets 2.19.2 - Tokenizers 0.12.1