--- libray_name: transformers pipeline_tag: text-generation license: other license_name: llama3 license_link: LICENSE language: - ko - en tags: - meta - llama - llama-3 - akallama library_name: transformers --- # AKALLAMA AkaLlama is a series of Korean language models designed for practical usability across a wide range of tasks. The initial model, AkaLlama-v0.1, is a fine-tuned version of Meta-Llama-3-70b-Instruct. It has been trained on a custom mix of publicly available datasets curated by the MIR Lab. Our goal is to explore cost-effective ways to adapt high-performing LLMs for specific use cases, such as different languages (e.g., Korean) or domains (e.g., organization-specific chatbots). ### Model Description This is the model card of a πŸ€— transformers model that has been pushed on the Hub. - **Developed by:** [Yonsei MIRLab](https://mirlab.yonsei.ac.kr/) - **Language(s) (NLP):** Korean, English - **License:** llama3 - **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) ## How to use This repo provides full model weight files for AkaLlama-70B-v0.1. # Use with transformers See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "mirlab/AkaLlama-llama3-70b-v0.1" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="auto", ) system_prompt = """ 당신은 μ—°μ„ΈλŒ€ν•™κ΅ λ©€ν‹°λͺ¨λ‹¬ 연ꡬ싀 (MIR lab) 이 λ§Œλ“  λŒ€κ·œλͺ¨ μ–Έμ–΄ λͺ¨λΈμΈ AkaLlama (μ•„μΉ΄λΌλ§ˆ) μž…λ‹ˆλ‹€.\nλ‹€μŒ 지침을 λ”°λ₯΄μ„Έμš”:\n1. μ‚¬μš©μžκ°€ λ³„λ„λ‘œ μš”μ²­ν•˜μ§€ μ•ŠλŠ” ν•œ 항상 ν•œκΈ€λ‘œ μ†Œν†΅ν•˜μ„Έμš”.\n2. μœ ν•΄ν•˜κ±°λ‚˜ λΉ„μœ€λ¦¬μ , 차별적, μœ„ν—˜ν•˜κ±°λ‚˜ λΆˆλ²•μ μΈ λ‚΄μš©μ΄ 닡변에 ν¬ν•¨λ˜μ–΄μ„œλŠ” μ•ˆ λ©λ‹ˆλ‹€.\n3. 질문이 말이 λ˜μ§€ μ•Šκ±°λ‚˜ 사싀에 λΆ€ν•©ν•˜μ§€ μ•ŠλŠ” 경우 μ •λ‹΅ λŒ€μ‹  κ·Έ 이유λ₯Ό μ„€λͺ…ν•˜μ„Έμš”. μ§ˆλ¬Έμ— λŒ€ν•œ 닡을 λͺ¨λ₯Έλ‹€λ©΄ 거짓 정보λ₯Ό κ³΅μœ ν•˜μ§€ λ§ˆμ„Έμš”.\n4. μ•ˆμ „μ΄λ‚˜ μœ€λ¦¬μ— μœ„λ°°λ˜μ§€ μ•ŠλŠ” ν•œ μ‚¬μš©μžμ˜ λͺ¨λ“  μ§ˆλ¬Έμ— μ™„μ „ν•˜κ³  ν¬κ΄„μ μœΌλ‘œ λ‹΅λ³€ν•˜μ„Έμš”. """ messages = [ {"role": "system", "content": "system_prompt"}, {"role": "user", "content": "λ„€ 이름은 뭐야?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## Training Details ### Training Procedure We trained AkaLlama using a preference learning alignment algorithm called [Odds Ratio Preference Optimization (ORPO)](https://huggingface.co/papers/2403.07691). Our training pipeline is almost identical to that of [HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1), aside from minor hyperparameter changes. Please check out Huggingface's [alignment handbook](https://github.com/huggingface/alignment-handbook?tab=readme-ov-file) for further details, including the chat template. ### Training Data Detailed descriptions regarding training data will be announced later. ### Examples
Math Solving[CLICK TO EXPAND]
Writting[CLICK TO EXPAND]
logical Reasoning[CLICK TO EXPAND]
Coding [CLICK TO EXPAND]
You can find more examples at [our project page](https://yonsei-mir.github.io/AkaLLaMA-page) ## Special Thanks - Data Center of the Department of Artificial Intelligence at Yonsei University for the computation resources