--- library_name: peft language: - it license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: asr_temp results: [] --- # asr_temp This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 8.6960 - Wer: 225.1852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 8.5666 | 0.1408 | 5 | 8.6960 | 225.1852 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.2.0 - Datasets 3.1.0 - Tokenizers 0.19.1