--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 프리미엄 수제 명절전 제사전 모듬전 700g 동그랑땡+동태전+깻잎전+꼬지+표고+호박전 동태전 300g (#M)식품>냉동/간편조리식품>튀김류 T200 > Naverstore > 식품 > 간편조리식품 > 떡볶이/튀김/어묵 > 튀김류 - text: (10+1) 다즐샵 식단 도시락 15종 골라담기 11_다섯가지나물밥+참스테이크 (#M)식품>냉동/간편조리식품>도시락 T200 > Naverstore > 식품 > 간편조리식품 > 도시락/밥류 > 도시락 - text: 국내산 생 닭가슴살 / 닭안심살 5kg 10kg (1kg 500g 포장) 냉장 냉동 (냉동) 닭가슴살_(냉동) 닭가슴살 1kg x 5팩 (#M)식품>축산물>닭고기>닭가슴살 T200 > Naverstore > 식품 > 간편조리식품 > 샐러드/닭가슴살 > 닭가슴살 - text: 퀴진 에어프라이어 크리스피 양념감자튀김 800g 2봉 1. 퀴진 에어 크리스피 양념감자 800g 1. 퀴진 에어 크리스피 양념감자 800g 1. 퀴진 에어 크리스피 양념감자 800g_1. 퀴진 에어 크리스피 양념감자 800g (#M)식품>냉동/간편조리식품>튀김류 T200 > Naverstore > 식품 > 간편조리식품 > 떡볶이/튀김/어묵 > 튀김류 - text: 1년 내내 질리지 않는 프리미엄 냉동도시락 / 넉넉소반 향긋한 깻잎닭갈비 흑미밥 1팩 5. [넉넉소반] 매콤한 제육볶음 현미밥 (#M)식품>냉동/간편조리식품>도시락 T200 > Naverstore > 식품 > 간편조리식품 > 도시락/밥류 > 도시락 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: klue/roberta-base model-index: - name: SetFit with klue/roberta-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9987360594795539 name: Accuracy --- # SetFit with klue/roberta-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 16 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 7.0 | | | 15.0 | | | 11.0 | | | 14.0 | | | 13.0 | | | 8.0 | | | 12.0 | | | 4.0 | | | 10.0 | | | 2.0 | | | 1.0 | | | 9.0 | | | 3.0 | | | 0.0 | | | 5.0 | | | 6.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9987 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_top_fd0") # Run inference preds = model("(10+1) 다즐샵 식단 도시락 15종 골라담기 11_다섯가지나물밥+참스테이크 (#M)식품>냉동/간편조리식품>도시락 T200 > Naverstore > 식품 > 간편조리식품 > 도시락/밥류 > 도시락") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 12 | 21.1790 | 41 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 32 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | ### Training Hyperparameters - batch_size: (128, 128) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0033 | 1 | 0.4947 | - | | 0.1634 | 50 | 0.4776 | - | | 0.3268 | 100 | 0.286 | - | | 0.4902 | 150 | 0.1239 | - | | 0.6536 | 200 | 0.0278 | - | | 0.8170 | 250 | 0.0062 | - | | 0.9804 | 300 | 0.0015 | - | | 1.1438 | 350 | 0.0008 | - | | 1.3072 | 400 | 0.0004 | - | | 1.4706 | 450 | 0.0002 | - | | 1.6340 | 500 | 0.0002 | - | | 1.7974 | 550 | 0.0002 | - | | 1.9608 | 600 | 0.0001 | - | | 2.1242 | 650 | 0.0001 | - | | 2.2876 | 700 | 0.0001 | - | | 2.4510 | 750 | 0.0001 | - | | 2.6144 | 800 | 0.0001 | - | | 2.7778 | 850 | 0.0001 | - | | 2.9412 | 900 | 0.0001 | - | | 3.1046 | 950 | 0.0 | - | | 3.2680 | 1000 | 0.0 | - | | 3.4314 | 1050 | 0.0 | - | | 3.5948 | 1100 | 0.0 | - | | 3.7582 | 1150 | 0.0 | - | | 3.9216 | 1200 | 0.0 | - | | 4.0850 | 1250 | 0.0 | - | | 4.2484 | 1300 | 0.0 | - | | 4.4118 | 1350 | 0.0 | - | | 4.5752 | 1400 | 0.0 | - | | 4.7386 | 1450 | 0.0 | - | | 4.9020 | 1500 | 0.0 | - | | 5.0654 | 1550 | 0.0 | - | | 5.2288 | 1600 | 0.0 | - | | 5.3922 | 1650 | 0.0 | - | | 5.5556 | 1700 | 0.0 | - | | 5.7190 | 1750 | 0.0 | - | | 5.8824 | 1800 | 0.0 | - | | 6.0458 | 1850 | 0.0 | - | | 6.2092 | 1900 | 0.0 | - | | 6.3725 | 1950 | 0.0 | - | | 6.5359 | 2000 | 0.0 | - | | 6.6993 | 2050 | 0.0 | - | | 6.8627 | 2100 | 0.0 | - | | 7.0261 | 2150 | 0.0 | - | | 7.1895 | 2200 | 0.0 | - | | 7.3529 | 2250 | 0.0 | - | | 7.5163 | 2300 | 0.0 | - | | 7.6797 | 2350 | 0.0 | - | | 7.8431 | 2400 | 0.0 | - | | 8.0065 | 2450 | 0.0 | - | | 8.1699 | 2500 | 0.0 | - | | 8.3333 | 2550 | 0.0 | - | | 8.4967 | 2600 | 0.0 | - | | 8.6601 | 2650 | 0.0 | - | | 8.8235 | 2700 | 0.0 | - | | 8.9869 | 2750 | 0.0 | - | | 9.1503 | 2800 | 0.0 | - | | 9.3137 | 2850 | 0.0 | - | | 9.4771 | 2900 | 0.0 | - | | 9.6405 | 2950 | 0.0 | - | | 9.8039 | 3000 | 0.0 | - | | 9.9673 | 3050 | 0.0 | - | | 10.1307 | 3100 | 0.0 | - | | 10.2941 | 3150 | 0.0 | - | | 10.4575 | 3200 | 0.0 | - | | 10.6209 | 3250 | 0.0 | - | | 10.7843 | 3300 | 0.0 | - | | 10.9477 | 3350 | 0.0 | - | | 11.1111 | 3400 | 0.0 | - | | 11.2745 | 3450 | 0.0 | - | | 11.4379 | 3500 | 0.0 | - | | 11.6013 | 3550 | 0.0 | - | | 11.7647 | 3600 | 0.0 | - | | 11.9281 | 3650 | 0.0 | - | | 12.0915 | 3700 | 0.0 | - | | 12.2549 | 3750 | 0.0 | - | | 12.4183 | 3800 | 0.0 | - | | 12.5817 | 3850 | 0.0 | - | | 12.7451 | 3900 | 0.0 | - | | 12.9085 | 3950 | 0.0 | - | | 13.0719 | 4000 | 0.0 | - | | 13.2353 | 4050 | 0.0 | - | | 13.3987 | 4100 | 0.0 | - | | 13.5621 | 4150 | 0.0 | - | | 13.7255 | 4200 | 0.0 | - | | 13.8889 | 4250 | 0.0 | - | | 14.0523 | 4300 | 0.0 | - | | 14.2157 | 4350 | 0.0 | - | | 14.3791 | 4400 | 0.0 | - | | 14.5425 | 4450 | 0.0001 | - | | 14.7059 | 4500 | 0.0001 | - | | 14.8693 | 4550 | 0.0 | - | | 15.0327 | 4600 | 0.0 | - | | 15.1961 | 4650 | 0.0 | - | | 15.3595 | 4700 | 0.0 | - | | 15.5229 | 4750 | 0.0 | - | | 15.6863 | 4800 | 0.0001 | - | | 15.8497 | 4850 | 0.0 | - | | 16.0131 | 4900 | 0.0 | - | | 16.1765 | 4950 | 0.0 | - | | 16.3399 | 5000 | 0.0 | - | | 16.5033 | 5050 | 0.0 | - | | 16.6667 | 5100 | 0.0 | - | | 16.8301 | 5150 | 0.0 | - | | 16.9935 | 5200 | 0.0 | - | | 17.1569 | 5250 | 0.0 | - | | 17.3203 | 5300 | 0.0 | - | | 17.4837 | 5350 | 0.0 | - | | 17.6471 | 5400 | 0.0 | - | | 17.8105 | 5450 | 0.0 | - | | 17.9739 | 5500 | 0.0 | - | | 18.1373 | 5550 | 0.0 | - | | 18.3007 | 5600 | 0.0 | - | | 18.4641 | 5650 | 0.0 | - | | 18.6275 | 5700 | 0.0 | - | | 18.7908 | 5750 | 0.0 | - | | 18.9542 | 5800 | 0.0 | - | | 19.1176 | 5850 | 0.0 | - | | 19.2810 | 5900 | 0.0 | - | | 19.4444 | 5950 | 0.0 | - | | 19.6078 | 6000 | 0.0 | - | | 19.7712 | 6050 | 0.0 | - | | 19.9346 | 6100 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```