mini1013 commited on
Commit
8e47fbc
·
verified ·
1 Parent(s): ab264f1

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 미쟝센 살롱10 노워시 트리트먼트 밤 135ml (#M)홈>화장품/미용>헤어케어>트리트먼트 Naverstore > 화장품/미용 >
14
+ 헤어케어 > 트리트먼트
15
+ - text: '[1+1] 쿤달 단백질 트리트먼트 500ml 라임모히또 (#M)홈>헤어>트리트먼트 Naverstore > 화장품/미용 > 헤어케어
16
+ > 트리트먼트'
17
+ - text: 로레알파리 토탈리페어5 트리트먼트 헤어팩 610ml(정가30,000원) LOREAL > LotteOn > 로레알파리 > Branded
18
+ > 로레알 헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩
19
+ - text: 실크테라피 알엑스 프로 실크 바이옴 앰플 트리트먼트 200mlx2 상세설명 참조 (#M)쿠팡 홈>생활용품>헤어/바디/세안>트리트먼트/팩>헤어앰플
20
+ Coupang > 뷰티 > 헤어 > 트리트먼트/팩 > 헤어앰플
21
+ - text: (대용량)아르간 에센셜 딥케어 헤어팩 /영양공급/손상모집중케어 MinSellAmount (#M)스마일배송 홈>뷰티>헤어케어/스타일링>트리트먼트/팩
22
+ Gmarket > 뷰티 > 바디/헤어 > 헤어케어 > 헤어팩
23
+ inference: true
24
+ model-index:
25
+ - name: SetFit with mini1013/master_domain
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: Unknown
32
+ type: unknown
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.8765822784810127
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit with mini1013/master_domain
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** SetFit
53
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
54
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
55
+ - **Maximum Sequence Length:** 512 tokens
56
+ - **Number of Classes:** 2 classes
57
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ### Model Labels
68
+ | Label | Examples |
69
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
70
+ | 1 | <ul><li>'[백화점][모로칸오일 공식수입원]인텐스 하이드레이팅 마스크 75ml (#M)GSSHOP>뷰티>헤어케어>트리트먼트 GSSHOP > 뷰티 > 헤어케어 > 트리트먼트'</li><li>'케라스타즈 덴시피크 덴시떼 마스크 500ml Kerastase Densifique Masque Densite 500ml (#M)홈>전체상품 Naverstore > 화장품/미용 > 헤어케어 > 헤어팩'</li><li>'[코스빅몰] 로레알 토탈리페어5 헤어팩 170ml x 3개 (#M)쿠팡 홈>생활용품>헤어/바디/세안>트리트먼트/팩>헤어팩/헤어마스크 Coupang > 뷰티 > 헤어 > 트리트먼트/팩 > 헤어팩/헤어마스크'</li></ul> |
71
+ | 0 | <ul><li>'[헤드스파7]헤드스파7 트리트먼트 안티에이징 215ml 4개 215ml 4개 (#M)11st>헤어케어>린스>기능성 11st > 뷰티 > 헤어케어 > 린스 > 기능성'</li><li>'쿤달 트리트먼트 1058ml ×2개 쿤달 트리트먼트 블랑향 1058ml*2 (#M)11st>헤어케어>트리트먼트>트리트먼트 11st > 뷰티 > 헤어케어 > 트리트먼트 > 트리트먼트'</li><li>'[부스스한 모발��] NEW 서브리믹 에어리플로우 마스크 200g (#M)홈>헤어마스크>부시시한 모발케어 Naverstore > 화장품/미용 > 헤어케어 > 헤어팩'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.8766 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt13_9_test_flat")
97
+ # Run inference
98
+ preds = model("[1+1] 쿤달 단백질 트리트먼트 500ml 라임모히또 (#M)홈>헤어>트리트먼트 Naverstore > 화장품/미용 > 헤어케어 > 트리트먼트")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:-------|:----|
130
+ | Word count | 11 | 21.04 | 49 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0 | 50 |
135
+ | 1 | 50 |
136
+
137
+ ### Training Hyperparameters
138
+ - batch_size: (64, 64)
139
+ - num_epochs: (30, 30)
140
+ - max_steps: -1
141
+ - sampling_strategy: oversampling
142
+ - num_iterations: 100
143
+ - body_learning_rate: (2e-05, 1e-05)
144
+ - head_learning_rate: 0.01
145
+ - loss: CosineSimilarityLoss
146
+ - distance_metric: cosine_distance
147
+ - margin: 0.25
148
+ - end_to_end: False
149
+ - use_amp: False
150
+ - warmup_proportion: 0.1
151
+ - l2_weight: 0.01
152
+ - seed: 42
153
+ - eval_max_steps: -1
154
+ - load_best_model_at_end: False
155
+
156
+ ### Training Results
157
+ | Epoch | Step | Training Loss | Validation Loss |
158
+ |:-------:|:----:|:-------------:|:---------------:|
159
+ | 0.0064 | 1 | 0.4232 | - |
160
+ | 0.3185 | 50 | 0.4139 | - |
161
+ | 0.6369 | 100 | 0.2706 | - |
162
+ | 0.9554 | 150 | 0.0711 | - |
163
+ | 1.2739 | 200 | 0.0288 | - |
164
+ | 1.5924 | 250 | 0.0046 | - |
165
+ | 1.9108 | 300 | 0.0012 | - |
166
+ | 2.2293 | 350 | 0.0003 | - |
167
+ | 2.5478 | 400 | 0.0002 | - |
168
+ | 2.8662 | 450 | 0.0001 | - |
169
+ | 3.1847 | 500 | 0.0001 | - |
170
+ | 3.5032 | 550 | 0.0001 | - |
171
+ | 3.8217 | 600 | 0.0 | - |
172
+ | 4.1401 | 650 | 0.0 | - |
173
+ | 4.4586 | 700 | 0.0 | - |
174
+ | 4.7771 | 750 | 0.0 | - |
175
+ | 5.0955 | 800 | 0.0 | - |
176
+ | 5.4140 | 850 | 0.0 | - |
177
+ | 5.7325 | 900 | 0.0 | - |
178
+ | 6.0510 | 950 | 0.0 | - |
179
+ | 6.3694 | 1000 | 0.0 | - |
180
+ | 6.6879 | 1050 | 0.0 | - |
181
+ | 7.0064 | 1100 | 0.0 | - |
182
+ | 7.3248 | 1150 | 0.0 | - |
183
+ | 7.6433 | 1200 | 0.0 | - |
184
+ | 7.9618 | 1250 | 0.0 | - |
185
+ | 8.2803 | 1300 | 0.0 | - |
186
+ | 8.5987 | 1350 | 0.0 | - |
187
+ | 8.9172 | 1400 | 0.0 | - |
188
+ | 9.2357 | 1450 | 0.0 | - |
189
+ | 9.5541 | 1500 | 0.0 | - |
190
+ | 9.8726 | 1550 | 0.0 | - |
191
+ | 10.1911 | 1600 | 0.0 | - |
192
+ | 10.5096 | 1650 | 0.0 | - |
193
+ | 10.8280 | 1700 | 0.0 | - |
194
+ | 11.1465 | 1750 | 0.0 | - |
195
+ | 11.4650 | 1800 | 0.0 | - |
196
+ | 11.7834 | 1850 | 0.0 | - |
197
+ | 12.1019 | 1900 | 0.0 | - |
198
+ | 12.4204 | 1950 | 0.0 | - |
199
+ | 12.7389 | 2000 | 0.0 | - |
200
+ | 13.0573 | 2050 | 0.0 | - |
201
+ | 13.3758 | 2100 | 0.0 | - |
202
+ | 13.6943 | 2150 | 0.0 | - |
203
+ | 14.0127 | 2200 | 0.0 | - |
204
+ | 14.3312 | 2250 | 0.0 | - |
205
+ | 14.6497 | 2300 | 0.0 | - |
206
+ | 14.9682 | 2350 | 0.0 | - |
207
+ | 15.2866 | 2400 | 0.0 | - |
208
+ | 15.6051 | 2450 | 0.0 | - |
209
+ | 15.9236 | 2500 | 0.0 | - |
210
+ | 16.2420 | 2550 | 0.0 | - |
211
+ | 16.5605 | 2600 | 0.0 | - |
212
+ | 16.8790 | 2650 | 0.0 | - |
213
+ | 17.1975 | 2700 | 0.0 | - |
214
+ | 17.5159 | 2750 | 0.0 | - |
215
+ | 17.8344 | 2800 | 0.0 | - |
216
+ | 18.1529 | 2850 | 0.0 | - |
217
+ | 18.4713 | 2900 | 0.0 | - |
218
+ | 18.7898 | 2950 | 0.0 | - |
219
+ | 19.1083 | 3000 | 0.0 | - |
220
+ | 19.4268 | 3050 | 0.0 | - |
221
+ | 19.7452 | 3100 | 0.0 | - |
222
+ | 20.0637 | 3150 | 0.0 | - |
223
+ | 20.3822 | 3200 | 0.0 | - |
224
+ | 20.7006 | 3250 | 0.0 | - |
225
+ | 21.0191 | 3300 | 0.0 | - |
226
+ | 21.3376 | 3350 | 0.0 | - |
227
+ | 21.6561 | 3400 | 0.0 | - |
228
+ | 21.9745 | 3450 | 0.0 | - |
229
+ | 22.2930 | 3500 | 0.0 | - |
230
+ | 22.6115 | 3550 | 0.0001 | - |
231
+ | 22.9299 | 3600 | 0.0002 | - |
232
+ | 23.2484 | 3650 | 0.0 | - |
233
+ | 23.5669 | 3700 | 0.0 | - |
234
+ | 23.8854 | 3750 | 0.0 | - |
235
+ | 24.2038 | 3800 | 0.0 | - |
236
+ | 24.5223 | 3850 | 0.0001 | - |
237
+ | 24.8408 | 3900 | 0.0 | - |
238
+ | 25.1592 | 3950 | 0.0001 | - |
239
+ | 25.4777 | 4000 | 0.0 | - |
240
+ | 25.7962 | 4050 | 0.0 | - |
241
+ | 26.1146 | 4100 | 0.0 | - |
242
+ | 26.4331 | 4150 | 0.0 | - |
243
+ | 26.7516 | 4200 | 0.0 | - |
244
+ | 27.0701 | 4250 | 0.0 | - |
245
+ | 27.3885 | 4300 | 0.0 | - |
246
+ | 27.7070 | 4350 | 0.0 | - |
247
+ | 28.0255 | 4400 | 0.0 | - |
248
+ | 28.3439 | 4450 | 0.0 | - |
249
+ | 28.6624 | 4500 | 0.0 | - |
250
+ | 28.9809 | 4550 | 0.0 | - |
251
+ | 29.2994 | 4600 | 0.0 | - |
252
+ | 29.6178 | 4650 | 0.0 | - |
253
+ | 29.9363 | 4700 | 0.0 | - |
254
+
255
+ ### Framework Versions
256
+ - Python: 3.10.12
257
+ - SetFit: 1.1.0
258
+ - Sentence Transformers: 3.3.1
259
+ - Transformers: 4.44.2
260
+ - PyTorch: 2.2.0a0+81ea7a4
261
+ - Datasets: 3.2.0
262
+ - Tokenizers: 0.19.1
263
+
264
+ ## Citation
265
+
266
+ ### BibTeX
267
+ ```bibtex
268
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
269
+ doi = {10.48550/ARXIV.2209.11055},
270
+ url = {https://arxiv.org/abs/2209.11055},
271
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
272
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
273
+ title = {Efficient Few-Shot Learning Without Prompts},
274
+ publisher = {arXiv},
275
+ year = {2022},
276
+ copyright = {Creative Commons Attribution 4.0 International}
277
+ }
278
+ ```
279
+
280
+ <!--
281
+ ## Glossary
282
+
283
+ *Clearly define terms in order to be accessible across audiences.*
284
+ -->
285
+
286
+ <!--
287
+ ## Model Card Authors
288
+
289
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
290
+ -->
291
+
292
+ <!--
293
+ ## Model Card Contact
294
+
295
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
296
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test_flat_top_flat",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37c12d5c1c566cb2f43757b0d94a561e34a22411e8e3de61f893fad687a8f57
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad6fe2fd01e40514f9372d65bca2a961e4075d6876998bb40158fce5643f602
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff