---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 셀프 다리찢기 기구 스트레칭 골반 내전근 요가 발레 스포츠/레저>댄스>댄스소품
- text: 발레바 발레봉 무용 난간대 스트레칭 학원 무용바 스포츠/레저>댄스>댄스소품
- text: 필라테스 다리찢는 스트레칭 피트니스 요가 발레 체조 I 스포츠/레저>댄스>댄스소품
- text: 댄스 발레바 스트레칭바 인용 일체형 튼튼한 유연성 바 일자형 스포츠/레저>댄스>댄스소품
- text: 발레 학원 홈 폴 바 1인 파드샤 워크 프레스 레그 봉 더블 레이어 스포츠/레저>댄스>댄스소품
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 |
- '2단 발레바 댄스 무용바 스트레칭 연습 레그 프레스 스포츠/레저>댄스>댄스소품'
- '발레바 폴댄스봉 실내 가정용 학원 스튜디오 폴봉 폴-D 50 0cm 스포츠/레저>댄스>댄스소품'
- '댄스 바 스트레칭 무용 플로어 학원 발레 연습 스포츠/레저>댄스>댄스소품'
|
| 0.0 | - '코코랑 맨디 밸리탑 밸리댄스복 라인 줌바 댄스티 밸리복 스포츠/레저>댄스>댄스복'
- '댄스 힙스카프 라인 스팽글 밸리 랩스커트 공연복 스포츠/레저>댄스>댄스복'
- '코코랑 코코레이스 벨리 힙스카프 성인 밸리댄스복 라인 스포츠/레저>댄스>댄스복'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl7")
# Run inference
preds = model("발레바 발레봉 무용 난간대 스트레칭 학원 무용바 스포츠/레저>댄스>댄스소품")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 9.9786 | 18 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0357 | 1 | 0.4782 | - |
| 1.7857 | 50 | 0.3827 | - |
| 3.5714 | 100 | 0.0001 | - |
| 5.3571 | 150 | 0.0 | - |
| 7.1429 | 200 | 0.0 | - |
| 8.9286 | 250 | 0.0 | - |
| 10.7143 | 300 | 0.0 | - |
| 12.5 | 350 | 0.0 | - |
| 14.2857 | 400 | 0.0 | - |
| 16.0714 | 450 | 0.0 | - |
| 17.8571 | 500 | 0.0 | - |
| 19.6429 | 550 | 0.0 | - |
| 21.4286 | 600 | 0.0 | - |
| 23.2143 | 650 | 0.0 | - |
| 25.0 | 700 | 0.0 | - |
| 26.7857 | 750 | 0.0 | - |
| 28.5714 | 800 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```