--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 요넥스 테니스공 홀더 메탈 볼클립 볼걸이 테니스용품 스포츠/레저>테니스>기타테니스용품 - text: 스트링 스타팅 클램프 알루미늄 합금 익스텐션 코드 테니스 배드민턴 전문 액세서리 1m 스포츠/레저>테니스>기타테니스용품 - text: 60 개 롤 스풀 10m 탄성 신축성 스트링 스레드 헤어 익스텐션 스레드 와이 스포츠/레저>테니스>스트링 - text: 알로 MATCH POINT 여성 테니스 스커트 스포츠/레저>테니스>테니스의류 - text: 디아도라 AIR TEX 테니스 볼 그래픽 반팔 티셔츠 GREEN D4221TRS14GNL 스포츠/레저>테니스>테니스의류 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 5.0 | | | 2.0 | | | 4.0 | | | 0.0 | | | 3.0 | | | 7.0 | | | 6.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_sl30") # Run inference preds = model("알로 MATCH POINT 여성 테니스 스커트 스포츠/레저>테니스>테니스의류") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 8.2241 | 18 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 50 | | 5.0 | 70 | | 6.0 | 70 | | 7.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0094 | 1 | 0.4693 | - | | 0.4717 | 50 | 0.4966 | - | | 0.9434 | 100 | 0.2749 | - | | 1.4151 | 150 | 0.0397 | - | | 1.8868 | 200 | 0.0179 | - | | 2.3585 | 250 | 0.0076 | - | | 2.8302 | 300 | 0.0 | - | | 3.3019 | 350 | 0.0 | - | | 3.7736 | 400 | 0.0 | - | | 4.2453 | 450 | 0.0 | - | | 4.7170 | 500 | 0.0 | - | | 5.1887 | 550 | 0.0 | - | | 5.6604 | 600 | 0.0 | - | | 6.1321 | 650 | 0.0 | - | | 6.6038 | 700 | 0.0 | - | | 7.0755 | 750 | 0.0 | - | | 7.5472 | 800 | 0.0 | - | | 8.0189 | 850 | 0.0 | - | | 8.4906 | 900 | 0.0 | - | | 8.9623 | 950 | 0.0 | - | | 9.4340 | 1000 | 0.0 | - | | 9.9057 | 1050 | 0.0 | - | | 10.3774 | 1100 | 0.0 | - | | 10.8491 | 1150 | 0.0 | - | | 11.3208 | 1200 | 0.0 | - | | 11.7925 | 1250 | 0.0 | - | | 12.2642 | 1300 | 0.0 | - | | 12.7358 | 1350 | 0.0 | - | | 13.2075 | 1400 | 0.0 | - | | 13.6792 | 1450 | 0.0 | - | | 14.1509 | 1500 | 0.0 | - | | 14.6226 | 1550 | 0.0 | - | | 15.0943 | 1600 | 0.0 | - | | 15.5660 | 1650 | 0.0 | - | | 16.0377 | 1700 | 0.0 | - | | 16.5094 | 1750 | 0.0 | - | | 16.9811 | 1800 | 0.0 | - | | 17.4528 | 1850 | 0.0 | - | | 17.9245 | 1900 | 0.0 | - | | 18.3962 | 1950 | 0.0 | - | | 18.8679 | 2000 | 0.0 | - | | 19.3396 | 2050 | 0.0 | - | | 19.8113 | 2100 | 0.0 | - | | 20.2830 | 2150 | 0.0 | - | | 20.7547 | 2200 | 0.0 | - | | 21.2264 | 2250 | 0.0 | - | | 21.6981 | 2300 | 0.0 | - | | 22.1698 | 2350 | 0.0 | - | | 22.6415 | 2400 | 0.0 | - | | 23.1132 | 2450 | 0.0 | - | | 23.5849 | 2500 | 0.0 | - | | 24.0566 | 2550 | 0.0 | - | | 24.5283 | 2600 | 0.0 | - | | 25.0 | 2650 | 0.0 | - | | 25.4717 | 2700 | 0.0 | - | | 25.9434 | 2750 | 0.0 | - | | 26.4151 | 2800 | 0.0 | - | | 26.8868 | 2850 | 0.0 | - | | 27.3585 | 2900 | 0.0 | - | | 27.8302 | 2950 | 0.0 | - | | 28.3019 | 3000 | 0.0 | - | | 28.7736 | 3050 | 0.0 | - | | 29.2453 | 3100 | 0.0 | - | | 29.7170 | 3150 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```