mini1013 commited on
Commit
7197267
·
verified ·
1 Parent(s): 958e33a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 요넥스 테니스공 홀더 메탈 볼클립 볼걸이 테니스용품 스포츠/레저>테니스>기타테니스용품
9
+ - text: 스트링 스타팅 클램프 알루미늄 합금 익스텐션 코드 테니스 배드민턴 전문 액세서리 1m 스포츠/레저>테니스>기타테니스용품
10
+ - text: 60 개 롤 스풀 10m 탄성 신축성 스트링 스레드 헤어 익스텐션 스레드 와이 스포츠/레저>테니스>스트링
11
+ - text: 알로 MATCH POINT 여성 테니스 스커트 스포츠/레저>테니스>테니스의류
12
+ - text: 디아도라 AIR TEX 테니스 볼 그래픽 반팔 티셔츠 GREEN D4221TRS14GNL 스포츠/레저>테니스>테니스의류
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 8 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1.0 | <ul><li>'윌슨 테니스 진동 방지 2개들이 PROFEEL 프로필 WRZ537700 스포츠/레저>테니스>기타테니스용품'</li><li>'국제 단추엘보 대 2단 1개입 엘보링 테니스라켓 댐프너 스포츠/레저>테니스>기타테니스용품'</li><li>'테니스 라켓거치대 배드민턴채 진열대 수납 보관대 스포츠/레저>테니스>기타테니스용품'</li></ul> |
66
+ | 5.0 | <ul><li>'윌슨 클래시 100 투어 테니스라켓 WR005711 스포츠/레저>테니스>테니스라켓'</li><li>'요넥스 아스트렐 100 테니스라켓 YY1209RT030 스포츠/레저>테니스>테니스라켓'</li><li>'낫소 옵티멈 투어 테니스라켓 스포츠/레저>테니스>테니스라켓'</li></ul> |
67
+ | 2.0 | <ul><li>'슈퍼스트링 갓클래스 신의클래스 122 127 12M 스포츠/레저>테니스>스트링'</li><li>'낫소 다이너마이트 테니스 스트링 200M 스포츠/레저>테니스>스트링'</li><li>'LUXILON 럭실론 테니스 스트링 거트 롤 알루파워 러프 1 25 200m WRZ9902 스포츠/레저>테니스>스트링'</li></ul> |
68
+ | 4.0 | <ul><li>'낫소스포츠 낫소 통볼 T-507C 스포츠/레저>테니스>테니스공'</li><li>'신신상사 스타스포츠 매치포인트 시합구 TB172 스포츠/레저>테니스>테니스공'</li><li>'프록시마 매치 포인트 테니스공 스포츠/레저>테니스>테니스공'</li></ul> |
69
+ | 0.0 | <ul><li>'투나 GENUINE 가죽���립 1 교체용 쿠션그립 리플레이스먼트 테니스 원그립 스포츠/레저>테니스>그립'</li><li>'낫소 테니스 오버그립 30개입 NSOG-30 스포츠/레저>테니스>그립'</li><li>'감마 GAMMA Tennis Overgrip Ideal for Tennis Pickleball Squash Badminton and Racquetball Durable and 스포츠/레저>테니스>그립'</li></ul> |
70
+ | 3.0 | <ul><li>'윌슨 WILSON 테니스 쉴드 슬링백 라켓 가방 스포츠/레저>테니스>테니스가방'</li><li>'부천정스포츠 라코스테 테니스가방 락팩 L23 스포츠 대용량 가방 스포츠/레저>테니스>테니스가방'</li><li>'윌슨 더플백 스포츠/레저>테니스>테니스가방'</li></ul> |
71
+ | 7.0 | <ul><li>'아식스 젤리솔루션 9 올코트 1041A330 600 스포츠/레저>테니스>테니스화'</li><li>'아식스 COURT SLIDE 3 CLAY OC코트 슬라이드 OC 여성 테니스화 옴니 클레이용 신발 1042A230 220824ASTS 스포츠/레저>테니스>테니스화'</li><li>'아식스 코트 FF3 올코트 테니스화 여성 1042A220 400 스포츠/레저>테니스>테니스화'</li></ul> |
72
+ | 6.0 | <ul><li>'윌슨 여성 윈 풀온 플리츠 테니스숏 반바지 클래식네이비 스포츠/레저>테니스>테니스의류'</li><li>'디아도라 테니스 라이프 그래픽 반팔티셔츠 VIOLET 스포츠/레저>테니스>테니스의류'</li><li>'라코스테 스포츠 치마바지 테니스 베이직 플리츠 스커트 7WJ JF0990-54G 스포츠/레저>테니스>테니스의류'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 1.0 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_sl30")
98
+ # Run inference
99
+ preds = model("알로 MATCH POINT 여성 테니스 스커트 스포츠/레저>테니스>테니스의류")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 3 | 8.2241 | 18 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0.0 | 70 |
136
+ | 1.0 | 70 |
137
+ | 2.0 | 70 |
138
+ | 3.0 | 70 |
139
+ | 4.0 | 50 |
140
+ | 5.0 | 70 |
141
+ | 6.0 | 70 |
142
+ | 7.0 | 70 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (256, 256)
146
+ - num_epochs: (30, 30)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 50
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - l2_weight: 0.01
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:-------:|:----:|:-------------:|:---------------:|
166
+ | 0.0094 | 1 | 0.4693 | - |
167
+ | 0.4717 | 50 | 0.4966 | - |
168
+ | 0.9434 | 100 | 0.2749 | - |
169
+ | 1.4151 | 150 | 0.0397 | - |
170
+ | 1.8868 | 200 | 0.0179 | - |
171
+ | 2.3585 | 250 | 0.0076 | - |
172
+ | 2.8302 | 300 | 0.0 | - |
173
+ | 3.3019 | 350 | 0.0 | - |
174
+ | 3.7736 | 400 | 0.0 | - |
175
+ | 4.2453 | 450 | 0.0 | - |
176
+ | 4.7170 | 500 | 0.0 | - |
177
+ | 5.1887 | 550 | 0.0 | - |
178
+ | 5.6604 | 600 | 0.0 | - |
179
+ | 6.1321 | 650 | 0.0 | - |
180
+ | 6.6038 | 700 | 0.0 | - |
181
+ | 7.0755 | 750 | 0.0 | - |
182
+ | 7.5472 | 800 | 0.0 | - |
183
+ | 8.0189 | 850 | 0.0 | - |
184
+ | 8.4906 | 900 | 0.0 | - |
185
+ | 8.9623 | 950 | 0.0 | - |
186
+ | 9.4340 | 1000 | 0.0 | - |
187
+ | 9.9057 | 1050 | 0.0 | - |
188
+ | 10.3774 | 1100 | 0.0 | - |
189
+ | 10.8491 | 1150 | 0.0 | - |
190
+ | 11.3208 | 1200 | 0.0 | - |
191
+ | 11.7925 | 1250 | 0.0 | - |
192
+ | 12.2642 | 1300 | 0.0 | - |
193
+ | 12.7358 | 1350 | 0.0 | - |
194
+ | 13.2075 | 1400 | 0.0 | - |
195
+ | 13.6792 | 1450 | 0.0 | - |
196
+ | 14.1509 | 1500 | 0.0 | - |
197
+ | 14.6226 | 1550 | 0.0 | - |
198
+ | 15.0943 | 1600 | 0.0 | - |
199
+ | 15.5660 | 1650 | 0.0 | - |
200
+ | 16.0377 | 1700 | 0.0 | - |
201
+ | 16.5094 | 1750 | 0.0 | - |
202
+ | 16.9811 | 1800 | 0.0 | - |
203
+ | 17.4528 | 1850 | 0.0 | - |
204
+ | 17.9245 | 1900 | 0.0 | - |
205
+ | 18.3962 | 1950 | 0.0 | - |
206
+ | 18.8679 | 2000 | 0.0 | - |
207
+ | 19.3396 | 2050 | 0.0 | - |
208
+ | 19.8113 | 2100 | 0.0 | - |
209
+ | 20.2830 | 2150 | 0.0 | - |
210
+ | 20.7547 | 2200 | 0.0 | - |
211
+ | 21.2264 | 2250 | 0.0 | - |
212
+ | 21.6981 | 2300 | 0.0 | - |
213
+ | 22.1698 | 2350 | 0.0 | - |
214
+ | 22.6415 | 2400 | 0.0 | - |
215
+ | 23.1132 | 2450 | 0.0 | - |
216
+ | 23.5849 | 2500 | 0.0 | - |
217
+ | 24.0566 | 2550 | 0.0 | - |
218
+ | 24.5283 | 2600 | 0.0 | - |
219
+ | 25.0 | 2650 | 0.0 | - |
220
+ | 25.4717 | 2700 | 0.0 | - |
221
+ | 25.9434 | 2750 | 0.0 | - |
222
+ | 26.4151 | 2800 | 0.0 | - |
223
+ | 26.8868 | 2850 | 0.0 | - |
224
+ | 27.3585 | 2900 | 0.0 | - |
225
+ | 27.8302 | 2950 | 0.0 | - |
226
+ | 28.3019 | 3000 | 0.0 | - |
227
+ | 28.7736 | 3050 | 0.0 | - |
228
+ | 29.2453 | 3100 | 0.0 | - |
229
+ | 29.7170 | 3150 | 0.0 | - |
230
+
231
+ ### Framework Versions
232
+ - Python: 3.10.12
233
+ - SetFit: 1.1.0
234
+ - Sentence Transformers: 3.3.1
235
+ - Transformers: 4.44.2
236
+ - PyTorch: 2.2.0a0+81ea7a4
237
+ - Datasets: 3.2.0
238
+ - Tokenizers: 0.19.1
239
+
240
+ ## Citation
241
+
242
+ ### BibTeX
243
+ ```bibtex
244
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
245
+ doi = {10.48550/ARXIV.2209.11055},
246
+ url = {https://arxiv.org/abs/2209.11055},
247
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
248
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
249
+ title = {Efficient Few-Shot Learning Without Prompts},
250
+ publisher = {arXiv},
251
+ year = {2022},
252
+ copyright = {Creative Commons Attribution 4.0 International}
253
+ }
254
+ ```
255
+
256
+ <!--
257
+ ## Glossary
258
+
259
+ *Clearly define terms in order to be accessible across audiences.*
260
+ -->
261
+
262
+ <!--
263
+ ## Model Card Authors
264
+
265
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
266
+ -->
267
+
268
+ <!--
269
+ ## Model Card Contact
270
+
271
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
272
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_sl_org_gtcate",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe3f561473bb098ccbafcd5fe45866016331ddb6c8d913e334d423aa92198a2
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc6e918df49c98e79ba9598c9866e63d14bf6d242ecd0b84deb4d6cc4027f6d2
3
+ size 50087
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff