Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +272 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: 요넥스 테니스공 홀더 메탈 볼클립 볼걸이 테니스용품 스포츠/레저>테니스>기타테니스용품
|
9 |
+
- text: 스트링 스타팅 클램프 알루미늄 합금 익스텐션 코드 테니스 배드민턴 전문 액세서리 1m 스포츠/레저>테니스>기타테니스용품
|
10 |
+
- text: 60 개 롤 스풀 10m 탄성 신축성 스트링 스레드 헤어 익스텐션 스레드 와이 스포츠/레저>테니스>스트링
|
11 |
+
- text: 알로 MATCH POINT 여성 테니스 스커트 스포츠/레저>테니스>테니스의류
|
12 |
+
- text: 디아도라 AIR TEX 테니스 볼 그래픽 반팔 티셔츠 GREEN D4221TRS14GNL 스포츠/레저>테니스>테니스의류
|
13 |
+
metrics:
|
14 |
+
- accuracy
|
15 |
+
pipeline_tag: text-classification
|
16 |
+
library_name: setfit
|
17 |
+
inference: true
|
18 |
+
base_model: mini1013/master_domain
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 1.0
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 8 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 1.0 | <ul><li>'윌슨 테니스 진동 방지 2개들이 PROFEEL 프로필 WRZ537700 스포츠/레저>테니스>기타테니스용품'</li><li>'국제 단추엘보 대 2단 1개입 엘보링 테니스라켓 댐프너 스포츠/레저>테니스>기타테니스용품'</li><li>'테니스 라켓거치대 배드민턴채 진열대 수납 보관대 스포츠/레저>테니스>기타테니스용품'</li></ul> |
|
66 |
+
| 5.0 | <ul><li>'윌슨 클래시 100 투어 테니스라켓 WR005711 스포츠/레저>테니스>테니스라켓'</li><li>'요넥스 아스트렐 100 테니스라켓 YY1209RT030 스포츠/레저>테니스>테니스라켓'</li><li>'낫소 옵티멈 투어 테니스라켓 스포츠/레저>테니스>테니스라켓'</li></ul> |
|
67 |
+
| 2.0 | <ul><li>'슈퍼스트링 갓클래스 신의클래스 122 127 12M 스포츠/레저>테니스>스트링'</li><li>'낫소 다이너마이트 테니스 스트링 200M 스포츠/레저>테니스>스트링'</li><li>'LUXILON 럭실론 테니스 스트링 거트 롤 알루파워 러프 1 25 200m WRZ9902 스포츠/레저>테니스>스트링'</li></ul> |
|
68 |
+
| 4.0 | <ul><li>'낫소스포츠 낫소 통볼 T-507C 스포츠/레저>테니스>테니스공'</li><li>'신신상사 스타스포츠 매치포인트 시합구 TB172 스포츠/레저>테니스>테니스공'</li><li>'프록시마 매치 포인트 테니스공 스포츠/레저>테니스>테니스공'</li></ul> |
|
69 |
+
| 0.0 | <ul><li>'투나 GENUINE 가죽���립 1 교체용 쿠션그립 리플레이스먼트 테니스 원그립 스포츠/레저>테니스>그립'</li><li>'낫소 테니스 오버그립 30개입 NSOG-30 스포츠/레저>테니스>그립'</li><li>'감마 GAMMA Tennis Overgrip Ideal for Tennis Pickleball Squash Badminton and Racquetball Durable and 스포츠/레저>테니스>그립'</li></ul> |
|
70 |
+
| 3.0 | <ul><li>'윌슨 WILSON 테니스 쉴드 슬링백 라켓 가방 스포츠/레저>테니스>테니스가방'</li><li>'부천정스포츠 라코스테 테니스가방 락팩 L23 스포츠 대용량 가방 스포츠/레저>테니스>테니스가방'</li><li>'윌슨 더플백 스포츠/레저>테니스>테니스가방'</li></ul> |
|
71 |
+
| 7.0 | <ul><li>'아식스 젤리솔루션 9 올코트 1041A330 600 스포츠/레저>테니스>테니스화'</li><li>'아식스 COURT SLIDE 3 CLAY OC코트 슬라이드 OC 여성 테니스화 옴니 클레이용 신발 1042A230 220824ASTS 스포츠/레저>테니스>테니스화'</li><li>'아식스 코트 FF3 올코트 테니스화 여성 1042A220 400 스포츠/레저>테니스>테니스화'</li></ul> |
|
72 |
+
| 6.0 | <ul><li>'윌슨 여성 윈 풀온 플리츠 테니스숏 반바지 클래식네이비 스포츠/레저>테니스>테니스의류'</li><li>'디아도라 테니스 라이프 그래픽 반팔티셔츠 VIOLET 스포츠/레저>테니스>테니스의류'</li><li>'라코스테 스포츠 치마바지 테니스 베이직 플리츠 스커트 7WJ JF0990-54G 스포츠/레저>테니스>테니스의류'</li></ul> |
|
73 |
+
|
74 |
+
## Evaluation
|
75 |
+
|
76 |
+
### Metrics
|
77 |
+
| Label | Accuracy |
|
78 |
+
|:--------|:---------|
|
79 |
+
| **all** | 1.0 |
|
80 |
+
|
81 |
+
## Uses
|
82 |
+
|
83 |
+
### Direct Use for Inference
|
84 |
+
|
85 |
+
First install the SetFit library:
|
86 |
+
|
87 |
+
```bash
|
88 |
+
pip install setfit
|
89 |
+
```
|
90 |
+
|
91 |
+
Then you can load this model and run inference.
|
92 |
+
|
93 |
+
```python
|
94 |
+
from setfit import SetFitModel
|
95 |
+
|
96 |
+
# Download from the 🤗 Hub
|
97 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_sl30")
|
98 |
+
# Run inference
|
99 |
+
preds = model("알로 MATCH POINT 여성 테니스 스커트 스포츠/레저>테니스>테니스의류")
|
100 |
+
```
|
101 |
+
|
102 |
+
<!--
|
103 |
+
### Downstream Use
|
104 |
+
|
105 |
+
*List how someone could finetune this model on their own dataset.*
|
106 |
+
-->
|
107 |
+
|
108 |
+
<!--
|
109 |
+
### Out-of-Scope Use
|
110 |
+
|
111 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
<!--
|
115 |
+
## Bias, Risks and Limitations
|
116 |
+
|
117 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Recommendations
|
122 |
+
|
123 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
## Training Details
|
127 |
+
|
128 |
+
### Training Set Metrics
|
129 |
+
| Training set | Min | Median | Max |
|
130 |
+
|:-------------|:----|:-------|:----|
|
131 |
+
| Word count | 3 | 8.2241 | 18 |
|
132 |
+
|
133 |
+
| Label | Training Sample Count |
|
134 |
+
|:------|:----------------------|
|
135 |
+
| 0.0 | 70 |
|
136 |
+
| 1.0 | 70 |
|
137 |
+
| 2.0 | 70 |
|
138 |
+
| 3.0 | 70 |
|
139 |
+
| 4.0 | 50 |
|
140 |
+
| 5.0 | 70 |
|
141 |
+
| 6.0 | 70 |
|
142 |
+
| 7.0 | 70 |
|
143 |
+
|
144 |
+
### Training Hyperparameters
|
145 |
+
- batch_size: (256, 256)
|
146 |
+
- num_epochs: (30, 30)
|
147 |
+
- max_steps: -1
|
148 |
+
- sampling_strategy: oversampling
|
149 |
+
- num_iterations: 50
|
150 |
+
- body_learning_rate: (2e-05, 1e-05)
|
151 |
+
- head_learning_rate: 0.01
|
152 |
+
- loss: CosineSimilarityLoss
|
153 |
+
- distance_metric: cosine_distance
|
154 |
+
- margin: 0.25
|
155 |
+
- end_to_end: False
|
156 |
+
- use_amp: False
|
157 |
+
- warmup_proportion: 0.1
|
158 |
+
- l2_weight: 0.01
|
159 |
+
- seed: 42
|
160 |
+
- eval_max_steps: -1
|
161 |
+
- load_best_model_at_end: False
|
162 |
+
|
163 |
+
### Training Results
|
164 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
165 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
166 |
+
| 0.0094 | 1 | 0.4693 | - |
|
167 |
+
| 0.4717 | 50 | 0.4966 | - |
|
168 |
+
| 0.9434 | 100 | 0.2749 | - |
|
169 |
+
| 1.4151 | 150 | 0.0397 | - |
|
170 |
+
| 1.8868 | 200 | 0.0179 | - |
|
171 |
+
| 2.3585 | 250 | 0.0076 | - |
|
172 |
+
| 2.8302 | 300 | 0.0 | - |
|
173 |
+
| 3.3019 | 350 | 0.0 | - |
|
174 |
+
| 3.7736 | 400 | 0.0 | - |
|
175 |
+
| 4.2453 | 450 | 0.0 | - |
|
176 |
+
| 4.7170 | 500 | 0.0 | - |
|
177 |
+
| 5.1887 | 550 | 0.0 | - |
|
178 |
+
| 5.6604 | 600 | 0.0 | - |
|
179 |
+
| 6.1321 | 650 | 0.0 | - |
|
180 |
+
| 6.6038 | 700 | 0.0 | - |
|
181 |
+
| 7.0755 | 750 | 0.0 | - |
|
182 |
+
| 7.5472 | 800 | 0.0 | - |
|
183 |
+
| 8.0189 | 850 | 0.0 | - |
|
184 |
+
| 8.4906 | 900 | 0.0 | - |
|
185 |
+
| 8.9623 | 950 | 0.0 | - |
|
186 |
+
| 9.4340 | 1000 | 0.0 | - |
|
187 |
+
| 9.9057 | 1050 | 0.0 | - |
|
188 |
+
| 10.3774 | 1100 | 0.0 | - |
|
189 |
+
| 10.8491 | 1150 | 0.0 | - |
|
190 |
+
| 11.3208 | 1200 | 0.0 | - |
|
191 |
+
| 11.7925 | 1250 | 0.0 | - |
|
192 |
+
| 12.2642 | 1300 | 0.0 | - |
|
193 |
+
| 12.7358 | 1350 | 0.0 | - |
|
194 |
+
| 13.2075 | 1400 | 0.0 | - |
|
195 |
+
| 13.6792 | 1450 | 0.0 | - |
|
196 |
+
| 14.1509 | 1500 | 0.0 | - |
|
197 |
+
| 14.6226 | 1550 | 0.0 | - |
|
198 |
+
| 15.0943 | 1600 | 0.0 | - |
|
199 |
+
| 15.5660 | 1650 | 0.0 | - |
|
200 |
+
| 16.0377 | 1700 | 0.0 | - |
|
201 |
+
| 16.5094 | 1750 | 0.0 | - |
|
202 |
+
| 16.9811 | 1800 | 0.0 | - |
|
203 |
+
| 17.4528 | 1850 | 0.0 | - |
|
204 |
+
| 17.9245 | 1900 | 0.0 | - |
|
205 |
+
| 18.3962 | 1950 | 0.0 | - |
|
206 |
+
| 18.8679 | 2000 | 0.0 | - |
|
207 |
+
| 19.3396 | 2050 | 0.0 | - |
|
208 |
+
| 19.8113 | 2100 | 0.0 | - |
|
209 |
+
| 20.2830 | 2150 | 0.0 | - |
|
210 |
+
| 20.7547 | 2200 | 0.0 | - |
|
211 |
+
| 21.2264 | 2250 | 0.0 | - |
|
212 |
+
| 21.6981 | 2300 | 0.0 | - |
|
213 |
+
| 22.1698 | 2350 | 0.0 | - |
|
214 |
+
| 22.6415 | 2400 | 0.0 | - |
|
215 |
+
| 23.1132 | 2450 | 0.0 | - |
|
216 |
+
| 23.5849 | 2500 | 0.0 | - |
|
217 |
+
| 24.0566 | 2550 | 0.0 | - |
|
218 |
+
| 24.5283 | 2600 | 0.0 | - |
|
219 |
+
| 25.0 | 2650 | 0.0 | - |
|
220 |
+
| 25.4717 | 2700 | 0.0 | - |
|
221 |
+
| 25.9434 | 2750 | 0.0 | - |
|
222 |
+
| 26.4151 | 2800 | 0.0 | - |
|
223 |
+
| 26.8868 | 2850 | 0.0 | - |
|
224 |
+
| 27.3585 | 2900 | 0.0 | - |
|
225 |
+
| 27.8302 | 2950 | 0.0 | - |
|
226 |
+
| 28.3019 | 3000 | 0.0 | - |
|
227 |
+
| 28.7736 | 3050 | 0.0 | - |
|
228 |
+
| 29.2453 | 3100 | 0.0 | - |
|
229 |
+
| 29.7170 | 3150 | 0.0 | - |
|
230 |
+
|
231 |
+
### Framework Versions
|
232 |
+
- Python: 3.10.12
|
233 |
+
- SetFit: 1.1.0
|
234 |
+
- Sentence Transformers: 3.3.1
|
235 |
+
- Transformers: 4.44.2
|
236 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
237 |
+
- Datasets: 3.2.0
|
238 |
+
- Tokenizers: 0.19.1
|
239 |
+
|
240 |
+
## Citation
|
241 |
+
|
242 |
+
### BibTeX
|
243 |
+
```bibtex
|
244 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
245 |
+
doi = {10.48550/ARXIV.2209.11055},
|
246 |
+
url = {https://arxiv.org/abs/2209.11055},
|
247 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
248 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
249 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
250 |
+
publisher = {arXiv},
|
251 |
+
year = {2022},
|
252 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
253 |
+
}
|
254 |
+
```
|
255 |
+
|
256 |
+
<!--
|
257 |
+
## Glossary
|
258 |
+
|
259 |
+
*Clearly define terms in order to be accessible across audiences.*
|
260 |
+
-->
|
261 |
+
|
262 |
+
<!--
|
263 |
+
## Model Card Authors
|
264 |
+
|
265 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
266 |
+
-->
|
267 |
+
|
268 |
+
<!--
|
269 |
+
## Model Card Contact
|
270 |
+
|
271 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
272 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_sl_org_gtcate",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fe3f561473bb098ccbafcd5fe45866016331ddb6c8d913e334d423aa92198a2
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc6e918df49c98e79ba9598c9866e63d14bf6d242ecd0b84deb4d6cc4027f6d2
|
3 |
+
size 50087
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|