--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 고급형 검도 손목보호대 검도보호대 일본산 스포츠/레저>검도>검도보호용품 - text: 검좌대 검도 목검 거치대 사무라이검 받침대 플루트 진열대 검 스탠드 죽도 선반 스포츠/레저>검도>기타검도용품 - text: 검도단 탁상 사무실용 대나무 디스플레이 Tier 478490 1 스포츠/레저>검도>검도보호용품 - text: 스탠드 검도 타격대 타이어 죽도 훈련 연습 수련 도장 스포츠/레저>검도>타격대 - text: 검거치대 좌대 거치대 진열대 검받침대 사극 무술 랙 소품 목도 스포츠/레저>검도>기타검도용품 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.0 | | | 1.0 | | | 2.0 | | | 3.0 | | | 4.0 | | | 5.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_sl0") # Run inference preds = model("고급형 검도 손목보호대 검도보호대 일본산 스포츠/레저>검도>검도보호용품") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.5927 | 19 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 12 | | 3.0 | 15 | | 4.0 | 11 | | 5.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0204 | 1 | 0.4824 | - | | 1.0204 | 50 | 0.4133 | - | | 2.0408 | 100 | 0.0315 | - | | 3.0612 | 150 | 0.0021 | - | | 4.0816 | 200 | 0.0001 | - | | 5.1020 | 250 | 0.0 | - | | 6.1224 | 300 | 0.0 | - | | 7.1429 | 350 | 0.0 | - | | 8.1633 | 400 | 0.0 | - | | 9.1837 | 450 | 0.0 | - | | 10.2041 | 500 | 0.0 | - | | 11.2245 | 550 | 0.0 | - | | 12.2449 | 600 | 0.0 | - | | 13.2653 | 650 | 0.0 | - | | 14.2857 | 700 | 0.0 | - | | 15.3061 | 750 | 0.0 | - | | 16.3265 | 800 | 0.0 | - | | 17.3469 | 850 | 0.0 | - | | 18.3673 | 900 | 0.0 | - | | 19.3878 | 950 | 0.0 | - | | 20.4082 | 1000 | 0.0 | - | | 21.4286 | 1050 | 0.0 | - | | 22.4490 | 1100 | 0.0 | - | | 23.4694 | 1150 | 0.0 | - | | 24.4898 | 1200 | 0.0 | - | | 25.5102 | 1250 | 0.0 | - | | 26.5306 | 1300 | 0.0 | - | | 27.5510 | 1350 | 0.0 | - | | 28.5714 | 1400 | 0.0 | - | | 29.5918 | 1450 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```