File size: 11,052 Bytes
0dbc447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 2 지퍼형 항균베개솜 4060 애프터식스 가구/인테리어>솜류>베개솜/속통>일반베개솜
- text: 홈즈리빙 알러지케어 순면 시그니처 경추베개 가구/인테리어>솜류>베개솜/속통>마이크로화이바베개솜
- text: 그레이 바닥요매트 요솜 싱글1인용 요커버 J리빙 가구/인테리어>솜류>요솜/매트솜>견면요솜
- text: 솔로젠 가드풀 바이오 문손잡이 커버 소형 2매입 자전거 도어락 TgQ 가구/인테리어>솜류>요솜/매트솜>견면요솜
- text: 겨울용 알러지케어 블랙파이핑 헝가리 구스 이불 솜털80 -  가구/인테리어>솜류>이불솜>거위털/오리털이불솜
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                   |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.0   | <ul><li>'토게 속성 인형 이누마키 솜인형 솜뭉치 가구/인테리어>솜류>쿠션솜'</li><li>'모던하우스 호텔 다운필 쿠션솜 50x50 FP4119002 가구/인테리어>솜류>쿠션솜'</li><li>'텐바이텐 푹신한 국산 쿠션솜 지퍼형 빵빵한 구름솜 50x50 가구/인테리어>솜류>쿠션솜'</li></ul>                                                              |
| 2.0   | <ul><li>'목화 솜 요 솜이불 겨울 패드 토퍼 이불 바닥 목화솜 가구/인테리어>솜류>요솜/매트솜>목화요솜'</li><li>'이브자리 뉴 레이언 요솜 S D Q K 가구/인테리어>솜류>요솜/매트솜>견면요솜'</li><li>'생일 축하 케이크 토퍼 글리터 발레 걸 댄스 발레리나 여아용 파티 장식 댄서 토퍼 골든 132066 가구/인테리어>솜류>요솜/매트솜>견면요솜'</li></ul>                   |
| 3.0   | <ul><li>'폭스베딩 사계절용 모달 헝가리 구스다운 이불 솜털93프로 - 킹600g 가구/인테리어>솜류>이불솜>거위털/오리털이불솜'</li><li>'슈프렐 95도 사계절 이불솜 가구/인테리어>솜류>이불솜>일반이불솜'</li><li>'북유럽풍 램스울 양모 겨울이불 순면 이불세트 침구 극세사 두꺼운 가구/인테리어>솜류>이불솜>양모이불솜'</li></ul>                                    |
| 0.0   | <ul><li>'베이직 방석솜 가구/인테리어>솜류>방석솜'</li><li>'코지톡 사용감의 원형 솜방석 4개 가구/인테리어>솜류>방석솜'</li><li>'포근한 하라홈 국내산 구름 새솜 방석솜 50x50 가구/인테리어>솜류>방석솜'</li></ul>                                                                                                |
| 1.0   | <ul><li>'힐튼 호텔 퀼팅베개 계절베개 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'</li><li>'바운티풀 호텔베개 폴란드 구스다운 90 수피마면 삼중구조 구스베개 600g 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'</li><li>'폭스베딩 프라우덴 헝가리산 구스 베개솜 솜털90 60수 베개커버선물 EH2TXX00106 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fi4")
# Run inference
preds = model("2장 지퍼형 항균베개솜 4060 애프터식스 가구/인테리어>솜류>베개솜/속통>일반베개솜")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 2   | 8.6171 | 19  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 70                    |
| 1.0   | 70                    |
| 2.0   | 70                    |
| 3.0   | 70                    |
| 4.0   | 70                    |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0145  | 1    | 0.4828        | -               |
| 0.7246  | 50   | 0.4997        | -               |
| 1.4493  | 100  | 0.2078        | -               |
| 2.1739  | 150  | 0.0067        | -               |
| 2.8986  | 200  | 0.0001        | -               |
| 3.6232  | 250  | 0.0           | -               |
| 4.3478  | 300  | 0.0           | -               |
| 5.0725  | 350  | 0.0           | -               |
| 5.7971  | 400  | 0.0           | -               |
| 6.5217  | 450  | 0.0           | -               |
| 7.2464  | 500  | 0.0           | -               |
| 7.9710  | 550  | 0.0           | -               |
| 8.6957  | 600  | 0.0           | -               |
| 9.4203  | 650  | 0.0           | -               |
| 10.1449 | 700  | 0.0           | -               |
| 10.8696 | 750  | 0.0           | -               |
| 11.5942 | 800  | 0.0           | -               |
| 12.3188 | 850  | 0.0           | -               |
| 13.0435 | 900  | 0.0           | -               |
| 13.7681 | 950  | 0.0           | -               |
| 14.4928 | 1000 | 0.0           | -               |
| 15.2174 | 1050 | 0.0           | -               |
| 15.9420 | 1100 | 0.0           | -               |
| 16.6667 | 1150 | 0.0           | -               |
| 17.3913 | 1200 | 0.0           | -               |
| 18.1159 | 1250 | 0.0           | -               |
| 18.8406 | 1300 | 0.0           | -               |
| 19.5652 | 1350 | 0.0           | -               |
| 20.2899 | 1400 | 0.0           | -               |
| 21.0145 | 1450 | 0.0           | -               |
| 21.7391 | 1500 | 0.0           | -               |
| 22.4638 | 1550 | 0.0           | -               |
| 23.1884 | 1600 | 0.0           | -               |
| 23.9130 | 1650 | 0.0           | -               |
| 24.6377 | 1700 | 0.0           | -               |
| 25.3623 | 1750 | 0.0           | -               |
| 26.0870 | 1800 | 0.0           | -               |
| 26.8116 | 1850 | 0.0           | -               |
| 27.5362 | 1900 | 0.0           | -               |
| 28.2609 | 1950 | 0.0           | -               |
| 28.9855 | 2000 | 0.0           | -               |
| 29.7101 | 2050 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->