--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 오리엔트카페트 북유럽 극세사 거실 대형 특 빈티지 바닥패드 물세탁 소형 러그원룸작은 여름 가구/인테리어>카페트/러그>왕골자리 - text: 쇼파마작자리 3인 가구/인테리어>카페트/러그>왕골자리 - text: 리브맘 달콤 쿨매트 미니싱글 가구/인테리어>카페트/러그>쿨매트 - text: VIP 데일리 이지케어 생활방수 러그 카페트 가구/인테리어>카페트/러그>왕골자리 - text: 나르샤매트 TPU 발편한 주방매트 일반형 가구/인테리어>카페트/러그>발매트 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 3.0 | | | 1.0 | | | 5.0 | | | 0.0 | | | 4.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fi14") # Run inference preds = model("쇼파마작자리 3인 가구/인테리어>카페트/러그>왕골자리") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 7.8109 | 18 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 52 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | | 5.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0127 | 1 | 0.5081 | - | | 0.6329 | 50 | 0.4966 | - | | 1.2658 | 100 | 0.4935 | - | | 1.8987 | 150 | 0.2567 | - | | 2.5316 | 200 | 0.0017 | - | | 3.1646 | 250 | 0.0 | - | | 3.7975 | 300 | 0.0 | - | | 4.4304 | 350 | 0.0 | - | | 5.0633 | 400 | 0.0 | - | | 5.6962 | 450 | 0.0 | - | | 6.3291 | 500 | 0.0 | - | | 6.9620 | 550 | 0.0 | - | | 7.5949 | 600 | 0.0 | - | | 8.2278 | 650 | 0.0 | - | | 8.8608 | 700 | 0.0 | - | | 9.4937 | 750 | 0.0 | - | | 10.1266 | 800 | 0.0 | - | | 10.7595 | 850 | 0.0 | - | | 11.3924 | 900 | 0.0 | - | | 12.0253 | 950 | 0.0 | - | | 12.6582 | 1000 | 0.0 | - | | 13.2911 | 1050 | 0.0 | - | | 13.9241 | 1100 | 0.0 | - | | 14.5570 | 1150 | 0.0 | - | | 15.1899 | 1200 | 0.0 | - | | 15.8228 | 1250 | 0.0 | - | | 16.4557 | 1300 | 0.0 | - | | 17.0886 | 1350 | 0.0 | - | | 17.7215 | 1400 | 0.0 | - | | 18.3544 | 1450 | 0.0 | - | | 18.9873 | 1500 | 0.0 | - | | 19.6203 | 1550 | 0.0 | - | | 20.2532 | 1600 | 0.0 | - | | 20.8861 | 1650 | 0.0 | - | | 21.5190 | 1700 | 0.0 | - | | 22.1519 | 1750 | 0.0 | - | | 22.7848 | 1800 | 0.0 | - | | 23.4177 | 1850 | 0.0 | - | | 24.0506 | 1900 | 0.0 | - | | 24.6835 | 1950 | 0.0 | - | | 25.3165 | 2000 | 0.0 | - | | 25.9494 | 2050 | 0.0 | - | | 26.5823 | 2100 | 0.0 | - | | 27.2152 | 2150 | 0.0 | - | | 27.8481 | 2200 | 0.0 | - | | 28.4810 | 2250 | 0.0 | - | | 29.1139 | 2300 | 0.0 | - | | 29.7468 | 2350 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```