--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: LG전자 올레드 TV OLED55C2FNA 스탠드 윤성 운송료상이 윤성종합가전 - text: '[엡손] EH-LS500W / 4K UHD 4000안시 2,500,000:1 EPSON 빔 프로젝터 초단초점 (주)메리트정보' - text: 루컴즈 2024년형 50인치 스마트 UHD 구글 TV 4K 에너지효율 1등급 T5003KUG 스탠드 빌리어네어디 - text: 이노스 S8601KU LG 패널 스마트 TV 구글티비 벽걸이 기사방문설치(브라켓별도)_수도권(서울경기인천)_86인치 QLED 구글TV (주)티지디지털 - text: 삼성 WMN4070SG 벽결이브라켓 삼성고정브라켓 두루엠에스 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.763001415762152 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 7 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6 | | | 2 | | | 5 | | | 0 | | | 4 | | | 1 | | | 3 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.7630 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_el13") # Run inference preds = model("삼성 WMN4070SG 벽결이브라켓 삼성고정브라켓 두루엠에스") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.4229 | 25 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 50 | | 1 | 50 | | 2 | 50 | | 3 | 50 | | 4 | 50 | | 5 | 50 | | 6 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0182 | 1 | 0.4965 | - | | 0.9091 | 50 | 0.118 | - | | 1.8182 | 100 | 0.0382 | - | | 2.7273 | 150 | 0.0008 | - | | 3.6364 | 200 | 0.0003 | - | | 4.5455 | 250 | 0.0002 | - | | 5.4545 | 300 | 0.0002 | - | | 6.3636 | 350 | 0.0002 | - | | 7.2727 | 400 | 0.0001 | - | | 8.1818 | 450 | 0.0001 | - | | 9.0909 | 500 | 0.0001 | - | | 10.0 | 550 | 0.0001 | - | | 10.9091 | 600 | 0.0001 | - | | 11.8182 | 650 | 0.0001 | - | | 12.7273 | 700 | 0.0001 | - | | 13.6364 | 750 | 0.0001 | - | | 14.5455 | 800 | 0.0001 | - | | 15.4545 | 850 | 0.0001 | - | | 16.3636 | 900 | 0.0001 | - | | 17.2727 | 950 | 0.0001 | - | | 18.1818 | 1000 | 0.0001 | - | | 19.0909 | 1050 | 0.0001 | - | | 20.0 | 1100 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```