--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 1분완성 네일팁 모음인조손톱 인조팁 붙이는네일팁 웨딩네 13)샤인네일팁-화이트 LotteOn > 뷰티 > 네일 > 네일스티커/네일팁 LotteOn > 뷰티 > 네일 > 네일스티커/네일팁 - text: 오피아이 인피니트샤인2 매니큐어 MI12 × 1개 (#M)쿠팡 홈>뷰티>네일>일반네일>컬러 매니큐어 Coupang > 뷰티 > 네일 > 일반네일 > 컬러 매니큐어 - text: 오피아이 젤 네일 컬러 GCV33 x 1개 (#M)쿠팡 홈>뷰티>네일>일반네일>컬러 매니큐어 Coupang > 뷰티 > 네일 > 일반네일 > 컬러 매니큐어 - text: 디올 베르니 212 튀튀 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트 - text: OPI 인피니트샤인 HRL31 LETS BE FRIENDS HRL31 - LETS BE FRIENDS! LotteOn > 뷰티 > 헤어/바디 > 헤어스타일링 > 염색/매니큐어 LotteOn > 뷰티 > 헤어/바디 > 헤어스타일링 > 염색/매니큐어 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.5301810865191147 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 3 | | | 0 | | | 2 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.5302 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt1_test_flat_top_cate") # Run inference preds = model("디올 베르니 212 튀튀 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 13 | 22.7236 | 41 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 49 | | 1 | 50 | | 2 | 50 | | 3 | 50 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 100 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0032 | 1 | 0.4603 | - | | 0.1608 | 50 | 0.4502 | - | | 0.3215 | 100 | 0.4315 | - | | 0.4823 | 150 | 0.3996 | - | | 0.6431 | 200 | 0.365 | - | | 0.8039 | 250 | 0.2954 | - | | 0.9646 | 300 | 0.2647 | - | | 1.1254 | 350 | 0.2378 | - | | 1.2862 | 400 | 0.2257 | - | | 1.4469 | 450 | 0.2165 | - | | 1.6077 | 500 | 0.213 | - | | 1.7685 | 550 | 0.1999 | - | | 1.9293 | 600 | 0.1838 | - | | 2.0900 | 650 | 0.1614 | - | | 2.2508 | 700 | 0.1164 | - | | 2.4116 | 750 | 0.0553 | - | | 2.5723 | 800 | 0.0366 | - | | 2.7331 | 850 | 0.0279 | - | | 2.8939 | 900 | 0.0219 | - | | 3.0547 | 950 | 0.0166 | - | | 3.2154 | 1000 | 0.0111 | - | | 3.3762 | 1050 | 0.0067 | - | | 3.5370 | 1100 | 0.0084 | - | | 3.6977 | 1150 | 0.0066 | - | | 3.8585 | 1200 | 0.0048 | - | | 4.0193 | 1250 | 0.0028 | - | | 4.1801 | 1300 | 0.0005 | - | | 4.3408 | 1350 | 0.0003 | - | | 4.5016 | 1400 | 0.0004 | - | | 4.6624 | 1450 | 0.0001 | - | | 4.8232 | 1500 | 0.0001 | - | | 4.9839 | 1550 | 0.0001 | - | | 5.1447 | 1600 | 0.0001 | - | | 5.3055 | 1650 | 0.0001 | - | | 5.4662 | 1700 | 0.0002 | - | | 5.6270 | 1750 | 0.0 | - | | 5.7878 | 1800 | 0.0 | - | | 5.9486 | 1850 | 0.0 | - | | 6.1093 | 1900 | 0.0001 | - | | 6.2701 | 1950 | 0.0 | - | | 6.4309 | 2000 | 0.0 | - | | 6.5916 | 2050 | 0.0 | - | | 6.7524 | 2100 | 0.0 | - | | 6.9132 | 2150 | 0.0002 | - | | 7.0740 | 2200 | 0.0002 | - | | 7.2347 | 2250 | 0.0 | - | | 7.3955 | 2300 | 0.0 | - | | 7.5563 | 2350 | 0.0 | - | | 7.7170 | 2400 | 0.0 | - | | 7.8778 | 2450 | 0.0 | - | | 8.0386 | 2500 | 0.0 | - | | 8.1994 | 2550 | 0.0 | - | | 8.3601 | 2600 | 0.0 | - | | 8.5209 | 2650 | 0.0 | - | | 8.6817 | 2700 | 0.0 | - | | 8.8424 | 2750 | 0.0 | - | | 9.0032 | 2800 | 0.0 | - | | 9.1640 | 2850 | 0.0 | - | | 9.3248 | 2900 | 0.0 | - | | 9.4855 | 2950 | 0.0 | - | | 9.6463 | 3000 | 0.0 | - | | 9.8071 | 3050 | 0.0 | - | | 9.9678 | 3100 | 0.0 | - | | 10.1286 | 3150 | 0.0 | - | | 10.2894 | 3200 | 0.0 | - | | 10.4502 | 3250 | 0.0 | - | | 10.6109 | 3300 | 0.0 | - | | 10.7717 | 3350 | 0.0 | - | | 10.9325 | 3400 | 0.0 | - | | 11.0932 | 3450 | 0.0 | - | | 11.2540 | 3500 | 0.0 | - | | 11.4148 | 3550 | 0.0 | - | | 11.5756 | 3600 | 0.0 | - | | 11.7363 | 3650 | 0.0 | - | | 11.8971 | 3700 | 0.0 | - | | 12.0579 | 3750 | 0.0004 | - | | 12.2186 | 3800 | 0.0 | - | | 12.3794 | 3850 | 0.0001 | - | | 12.5402 | 3900 | 0.0001 | - | | 12.7010 | 3950 | 0.0 | - | | 12.8617 | 4000 | 0.0001 | - | | 13.0225 | 4050 | 0.0002 | - | | 13.1833 | 4100 | 0.0009 | - | | 13.3441 | 4150 | 0.0037 | - | | 13.5048 | 4200 | 0.0025 | - | | 13.6656 | 4250 | 0.0009 | - | | 13.8264 | 4300 | 0.0002 | - | | 13.9871 | 4350 | 0.0002 | - | | 14.1479 | 4400 | 0.0 | - | | 14.3087 | 4450 | 0.0002 | - | | 14.4695 | 4500 | 0.0001 | - | | 14.6302 | 4550 | 0.0004 | - | | 14.7910 | 4600 | 0.0008 | - | | 14.9518 | 4650 | 0.0 | - | | 15.1125 | 4700 | 0.0 | - | | 15.2733 | 4750 | 0.0001 | - | | 15.4341 | 4800 | 0.0 | - | | 15.5949 | 4850 | 0.0 | - | | 15.7556 | 4900 | 0.0002 | - | | 15.9164 | 4950 | 0.0 | - | | 16.0772 | 5000 | 0.0 | - | | 16.2379 | 5050 | 0.0001 | - | | 16.3987 | 5100 | 0.0 | - | | 16.5595 | 5150 | 0.0 | - | | 16.7203 | 5200 | 0.0 | - | | 16.8810 | 5250 | 0.0 | - | | 17.0418 | 5300 | 0.0 | - | | 17.2026 | 5350 | 0.0 | - | | 17.3633 | 5400 | 0.0 | - | | 17.5241 | 5450 | 0.0 | - | | 17.6849 | 5500 | 0.0 | - | | 17.8457 | 5550 | 0.0 | - | | 18.0064 | 5600 | 0.0 | - | | 18.1672 | 5650 | 0.0 | - | | 18.3280 | 5700 | 0.0 | - | | 18.4887 | 5750 | 0.0 | - | | 18.6495 | 5800 | 0.0 | - | | 18.8103 | 5850 | 0.0 | - | | 18.9711 | 5900 | 0.0 | - | | 19.1318 | 5950 | 0.0 | - | | 19.2926 | 6000 | 0.0 | - | | 19.4534 | 6050 | 0.0 | - | | 19.6141 | 6100 | 0.0 | - | | 19.7749 | 6150 | 0.0 | - | | 19.9357 | 6200 | 0.0 | - | | 20.0965 | 6250 | 0.0 | - | | 20.2572 | 6300 | 0.0 | - | | 20.4180 | 6350 | 0.0 | - | | 20.5788 | 6400 | 0.0 | - | | 20.7395 | 6450 | 0.0 | - | | 20.9003 | 6500 | 0.0 | - | | 21.0611 | 6550 | 0.0 | - | | 21.2219 | 6600 | 0.0 | - | | 21.3826 | 6650 | 0.0 | - | | 21.5434 | 6700 | 0.0 | - | | 21.7042 | 6750 | 0.0 | - | | 21.8650 | 6800 | 0.0 | - | | 22.0257 | 6850 | 0.0 | - | | 22.1865 | 6900 | 0.0 | - | | 22.3473 | 6950 | 0.0 | - | | 22.5080 | 7000 | 0.0 | - | | 22.6688 | 7050 | 0.0 | - | | 22.8296 | 7100 | 0.0 | - | | 22.9904 | 7150 | 0.0 | - | | 23.1511 | 7200 | 0.0 | - | | 23.3119 | 7250 | 0.0 | - | | 23.4727 | 7300 | 0.0 | - | | 23.6334 | 7350 | 0.0 | - | | 23.7942 | 7400 | 0.0 | - | | 23.9550 | 7450 | 0.0 | - | | 24.1158 | 7500 | 0.0 | - | | 24.2765 | 7550 | 0.0 | - | | 24.4373 | 7600 | 0.0 | - | | 24.5981 | 7650 | 0.0 | - | | 24.7588 | 7700 | 0.0 | - | | 24.9196 | 7750 | 0.0 | - | | 25.0804 | 7800 | 0.0 | - | | 25.2412 | 7850 | 0.0 | - | | 25.4019 | 7900 | 0.0 | - | | 25.5627 | 7950 | 0.0 | - | | 25.7235 | 8000 | 0.0 | - | | 25.8842 | 8050 | 0.0 | - | | 26.0450 | 8100 | 0.0 | - | | 26.2058 | 8150 | 0.0 | - | | 26.3666 | 8200 | 0.0 | - | | 26.5273 | 8250 | 0.0 | - | | 26.6881 | 8300 | 0.0 | - | | 26.8489 | 8350 | 0.0 | - | | 27.0096 | 8400 | 0.0 | - | | 27.1704 | 8450 | 0.0 | - | | 27.3312 | 8500 | 0.0 | - | | 27.4920 | 8550 | 0.0 | - | | 27.6527 | 8600 | 0.0 | - | | 27.8135 | 8650 | 0.0 | - | | 27.9743 | 8700 | 0.0 | - | | 28.1350 | 8750 | 0.0 | - | | 28.2958 | 8800 | 0.0 | - | | 28.4566 | 8850 | 0.0 | - | | 28.6174 | 8900 | 0.0 | - | | 28.7781 | 8950 | 0.0 | - | | 28.9389 | 9000 | 0.0 | - | | 29.0997 | 9050 | 0.0 | - | | 29.2605 | 9100 | 0.0 | - | | 29.4212 | 9150 | 0.0 | - | | 29.5820 | 9200 | 0.0 | - | | 29.7428 | 9250 | 0.0 | - | | 29.9035 | 9300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```