mini1013 commited on
Commit
a74f129
·
verified ·
1 Parent(s): b573250

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 1분완성 네일팁 모음인조손톱 인조팁 붙이는네일팁 웨딩네 13)샤인네일팁-화이트 LotteOn > 뷰티 > 네일 > 네일스티커/네일팁
14
+ LotteOn > 뷰티 > 네일 > 네일스티커/네일팁
15
+ - text: 오피아이 인피니트샤인2 매니큐어 MI12 × 1개 (#M)쿠팡 홈>뷰티>네일>일반네일>컬러 매니큐어 Coupang > 뷰티 > 네일
16
+ > 일반네일 > 컬러 매니큐어
17
+ - text: 오피아이 젤 네일 컬러 GCV33 x 1개 (#M)쿠팡 홈>뷰티>네일>일반네일>컬러 매니큐어 Coupang > 뷰티 > 네일 > 일반네일
18
+ > 컬러 매니큐어
19
+ - text: 디올 베르니 212 튀튀 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트
20
+ - text: OPI 인피니트샤인 HRL31 LETS BE FRIENDS HRL31 - LETS BE FRIENDS! LotteOn > 뷰티 > 헤어/바디
21
+ > 헤어스타일링 > 염색/매니큐어 LotteOn > 뷰티 > 헤어/바디 > 헤어스타일링 > 염색/매니큐어
22
+ inference: true
23
+ model-index:
24
+ - name: SetFit with mini1013/master_domain
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.5301810865191147
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with mini1013/master_domain
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 4 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 3 | <ul><li>'네일팁 실크익스텐션 311160L1720771597 티타늄금 물방울 (풀값 ) LotteOn > 뷰티 > 네일케어 > 네일케어도구 > 손톱깎이 LotteOn > 뷰티 > 네일케어 > 네일케어도구 > 손톱깎이'</li><li>'엔비베베 어린이 화장품 선물세트 어린이 썬쿠션+키즈네일스티커+워시패드 1개 (#M)쿠팡 홈>뷰티>어린이화장품>세트/키트 Coupang > 뷰티 > 어린이화장품 > 세트/키트'</li><li>'래쉬톡 원터치 인조 속눈썹 섹시 걸 × 3개입 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리'</li></ul> |
70
+ | 0 | <ul><li>'오피아이 넌아세톤 리무버 빨강 30ml × 5개 (#M)쿠팡 홈>뷰티>네일>일반네일>리무버 Coupang > 뷰티 > 네일 > 일반네일 > 리무버'</li><li>'[OPI][리무버] 넌아세톤리무버 30ml ssg > 뷰티 > 메이크업 > 네일 ssg > 뷰티 > 메이크업 > 네일'</li><li>'포먼트 젤���일 O.4 블러쉬 뷰티 × 1개 (#M)쿠팡 홈>뷰티>네일>젤네일>컬러 젤 Coupang > 뷰티 > 네일 > 젤네일 > 컬러 젤'</li></ul> |
71
+ | 2 | <ul><li>'오피아이 프로스파 오일투고 큐티클 오일2197877 1 7.5ml x 1개2197877 1 (#M)SSG.COM/메이크업/베이스메이크업/컨실러 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 컨실러'</li><li>'구찌 뷰티 [구찌] 베르니 아 옹글 하이 샤인 네일 라커 712 멜린다 그린 × 선택완료 (#M)쿠팡 홈>뷰티>네일>일반네일>컬러 매니큐어 Coupang > 뷰티 > 네일 > 일반네일 > 컬러 매니큐어'</li><li>'OPI ProSpa 각질 제거 큐티클 크림, 27ml SSG.COM/메이크업/베이스메이크업/메이크업베이스;ssg > 뷰티 > 메이크업 > 베이스메이크업 > 메이크업베이스 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 메이크업베이스'</li></ul> |
72
+ | 1 | <ul><li>'르 베르니 루쥬 느와르 DepartmentLotteOn > 뷰티 > 헤어/바디 > 핸드/풋케어 > 네일케어 DepartmentLotteOn > 뷰티 > 헤어/바디 > 핸드/풋케어 > 네일케어'</li><li>'베씨 베이스젤 + 탑젤 + 지브라파일 2p 세트 베이스젤, 탑젤, 지브라파일(100/150) × 1세트 LotteOn > 뷰티 > 네일 > 네일아트소품 LotteOn > 뷰티 > 네일 > 네일아트소품'</li><li>'OPI OPI Chrome Effects Nail Lacquer Top Coat CPT31 - 0.5 oz 상세내용참조 × 상세내용참조 (#M)쿠팡 홈>뷰티>메이크업>베이스 메이크업>베이스/프라이머 Coupang > 뷰티 > 메이크업 > 베이스 메이크업 > 베이스/프라이머'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 0.5302 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt1_test_flat_top_cate")
98
+ # Run inference
99
+ preds = model("디올 베르니 212 튀튀 LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:--------|:----|
131
+ | Word count | 13 | 22.7236 | 41 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0 | 49 |
136
+ | 1 | 50 |
137
+ | 2 | 50 |
138
+ | 3 | 50 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (64, 64)
142
+ - num_epochs: (30, 30)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - num_iterations: 100
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.01
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - l2_weight: 0.01
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: False
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:----:|:-------------:|:---------------:|
162
+ | 0.0032 | 1 | 0.4603 | - |
163
+ | 0.1608 | 50 | 0.4502 | - |
164
+ | 0.3215 | 100 | 0.4315 | - |
165
+ | 0.4823 | 150 | 0.3996 | - |
166
+ | 0.6431 | 200 | 0.365 | - |
167
+ | 0.8039 | 250 | 0.2954 | - |
168
+ | 0.9646 | 300 | 0.2647 | - |
169
+ | 1.1254 | 350 | 0.2378 | - |
170
+ | 1.2862 | 400 | 0.2257 | - |
171
+ | 1.4469 | 450 | 0.2165 | - |
172
+ | 1.6077 | 500 | 0.213 | - |
173
+ | 1.7685 | 550 | 0.1999 | - |
174
+ | 1.9293 | 600 | 0.1838 | - |
175
+ | 2.0900 | 650 | 0.1614 | - |
176
+ | 2.2508 | 700 | 0.1164 | - |
177
+ | 2.4116 | 750 | 0.0553 | - |
178
+ | 2.5723 | 800 | 0.0366 | - |
179
+ | 2.7331 | 850 | 0.0279 | - |
180
+ | 2.8939 | 900 | 0.0219 | - |
181
+ | 3.0547 | 950 | 0.0166 | - |
182
+ | 3.2154 | 1000 | 0.0111 | - |
183
+ | 3.3762 | 1050 | 0.0067 | - |
184
+ | 3.5370 | 1100 | 0.0084 | - |
185
+ | 3.6977 | 1150 | 0.0066 | - |
186
+ | 3.8585 | 1200 | 0.0048 | - |
187
+ | 4.0193 | 1250 | 0.0028 | - |
188
+ | 4.1801 | 1300 | 0.0005 | - |
189
+ | 4.3408 | 1350 | 0.0003 | - |
190
+ | 4.5016 | 1400 | 0.0004 | - |
191
+ | 4.6624 | 1450 | 0.0001 | - |
192
+ | 4.8232 | 1500 | 0.0001 | - |
193
+ | 4.9839 | 1550 | 0.0001 | - |
194
+ | 5.1447 | 1600 | 0.0001 | - |
195
+ | 5.3055 | 1650 | 0.0001 | - |
196
+ | 5.4662 | 1700 | 0.0002 | - |
197
+ | 5.6270 | 1750 | 0.0 | - |
198
+ | 5.7878 | 1800 | 0.0 | - |
199
+ | 5.9486 | 1850 | 0.0 | - |
200
+ | 6.1093 | 1900 | 0.0001 | - |
201
+ | 6.2701 | 1950 | 0.0 | - |
202
+ | 6.4309 | 2000 | 0.0 | - |
203
+ | 6.5916 | 2050 | 0.0 | - |
204
+ | 6.7524 | 2100 | 0.0 | - |
205
+ | 6.9132 | 2150 | 0.0002 | - |
206
+ | 7.0740 | 2200 | 0.0002 | - |
207
+ | 7.2347 | 2250 | 0.0 | - |
208
+ | 7.3955 | 2300 | 0.0 | - |
209
+ | 7.5563 | 2350 | 0.0 | - |
210
+ | 7.7170 | 2400 | 0.0 | - |
211
+ | 7.8778 | 2450 | 0.0 | - |
212
+ | 8.0386 | 2500 | 0.0 | - |
213
+ | 8.1994 | 2550 | 0.0 | - |
214
+ | 8.3601 | 2600 | 0.0 | - |
215
+ | 8.5209 | 2650 | 0.0 | - |
216
+ | 8.6817 | 2700 | 0.0 | - |
217
+ | 8.8424 | 2750 | 0.0 | - |
218
+ | 9.0032 | 2800 | 0.0 | - |
219
+ | 9.1640 | 2850 | 0.0 | - |
220
+ | 9.3248 | 2900 | 0.0 | - |
221
+ | 9.4855 | 2950 | 0.0 | - |
222
+ | 9.6463 | 3000 | 0.0 | - |
223
+ | 9.8071 | 3050 | 0.0 | - |
224
+ | 9.9678 | 3100 | 0.0 | - |
225
+ | 10.1286 | 3150 | 0.0 | - |
226
+ | 10.2894 | 3200 | 0.0 | - |
227
+ | 10.4502 | 3250 | 0.0 | - |
228
+ | 10.6109 | 3300 | 0.0 | - |
229
+ | 10.7717 | 3350 | 0.0 | - |
230
+ | 10.9325 | 3400 | 0.0 | - |
231
+ | 11.0932 | 3450 | 0.0 | - |
232
+ | 11.2540 | 3500 | 0.0 | - |
233
+ | 11.4148 | 3550 | 0.0 | - |
234
+ | 11.5756 | 3600 | 0.0 | - |
235
+ | 11.7363 | 3650 | 0.0 | - |
236
+ | 11.8971 | 3700 | 0.0 | - |
237
+ | 12.0579 | 3750 | 0.0004 | - |
238
+ | 12.2186 | 3800 | 0.0 | - |
239
+ | 12.3794 | 3850 | 0.0001 | - |
240
+ | 12.5402 | 3900 | 0.0001 | - |
241
+ | 12.7010 | 3950 | 0.0 | - |
242
+ | 12.8617 | 4000 | 0.0001 | - |
243
+ | 13.0225 | 4050 | 0.0002 | - |
244
+ | 13.1833 | 4100 | 0.0009 | - |
245
+ | 13.3441 | 4150 | 0.0037 | - |
246
+ | 13.5048 | 4200 | 0.0025 | - |
247
+ | 13.6656 | 4250 | 0.0009 | - |
248
+ | 13.8264 | 4300 | 0.0002 | - |
249
+ | 13.9871 | 4350 | 0.0002 | - |
250
+ | 14.1479 | 4400 | 0.0 | - |
251
+ | 14.3087 | 4450 | 0.0002 | - |
252
+ | 14.4695 | 4500 | 0.0001 | - |
253
+ | 14.6302 | 4550 | 0.0004 | - |
254
+ | 14.7910 | 4600 | 0.0008 | - |
255
+ | 14.9518 | 4650 | 0.0 | - |
256
+ | 15.1125 | 4700 | 0.0 | - |
257
+ | 15.2733 | 4750 | 0.0001 | - |
258
+ | 15.4341 | 4800 | 0.0 | - |
259
+ | 15.5949 | 4850 | 0.0 | - |
260
+ | 15.7556 | 4900 | 0.0002 | - |
261
+ | 15.9164 | 4950 | 0.0 | - |
262
+ | 16.0772 | 5000 | 0.0 | - |
263
+ | 16.2379 | 5050 | 0.0001 | - |
264
+ | 16.3987 | 5100 | 0.0 | - |
265
+ | 16.5595 | 5150 | 0.0 | - |
266
+ | 16.7203 | 5200 | 0.0 | - |
267
+ | 16.8810 | 5250 | 0.0 | - |
268
+ | 17.0418 | 5300 | 0.0 | - |
269
+ | 17.2026 | 5350 | 0.0 | - |
270
+ | 17.3633 | 5400 | 0.0 | - |
271
+ | 17.5241 | 5450 | 0.0 | - |
272
+ | 17.6849 | 5500 | 0.0 | - |
273
+ | 17.8457 | 5550 | 0.0 | - |
274
+ | 18.0064 | 5600 | 0.0 | - |
275
+ | 18.1672 | 5650 | 0.0 | - |
276
+ | 18.3280 | 5700 | 0.0 | - |
277
+ | 18.4887 | 5750 | 0.0 | - |
278
+ | 18.6495 | 5800 | 0.0 | - |
279
+ | 18.8103 | 5850 | 0.0 | - |
280
+ | 18.9711 | 5900 | 0.0 | - |
281
+ | 19.1318 | 5950 | 0.0 | - |
282
+ | 19.2926 | 6000 | 0.0 | - |
283
+ | 19.4534 | 6050 | 0.0 | - |
284
+ | 19.6141 | 6100 | 0.0 | - |
285
+ | 19.7749 | 6150 | 0.0 | - |
286
+ | 19.9357 | 6200 | 0.0 | - |
287
+ | 20.0965 | 6250 | 0.0 | - |
288
+ | 20.2572 | 6300 | 0.0 | - |
289
+ | 20.4180 | 6350 | 0.0 | - |
290
+ | 20.5788 | 6400 | 0.0 | - |
291
+ | 20.7395 | 6450 | 0.0 | - |
292
+ | 20.9003 | 6500 | 0.0 | - |
293
+ | 21.0611 | 6550 | 0.0 | - |
294
+ | 21.2219 | 6600 | 0.0 | - |
295
+ | 21.3826 | 6650 | 0.0 | - |
296
+ | 21.5434 | 6700 | 0.0 | - |
297
+ | 21.7042 | 6750 | 0.0 | - |
298
+ | 21.8650 | 6800 | 0.0 | - |
299
+ | 22.0257 | 6850 | 0.0 | - |
300
+ | 22.1865 | 6900 | 0.0 | - |
301
+ | 22.3473 | 6950 | 0.0 | - |
302
+ | 22.5080 | 7000 | 0.0 | - |
303
+ | 22.6688 | 7050 | 0.0 | - |
304
+ | 22.8296 | 7100 | 0.0 | - |
305
+ | 22.9904 | 7150 | 0.0 | - |
306
+ | 23.1511 | 7200 | 0.0 | - |
307
+ | 23.3119 | 7250 | 0.0 | - |
308
+ | 23.4727 | 7300 | 0.0 | - |
309
+ | 23.6334 | 7350 | 0.0 | - |
310
+ | 23.7942 | 7400 | 0.0 | - |
311
+ | 23.9550 | 7450 | 0.0 | - |
312
+ | 24.1158 | 7500 | 0.0 | - |
313
+ | 24.2765 | 7550 | 0.0 | - |
314
+ | 24.4373 | 7600 | 0.0 | - |
315
+ | 24.5981 | 7650 | 0.0 | - |
316
+ | 24.7588 | 7700 | 0.0 | - |
317
+ | 24.9196 | 7750 | 0.0 | - |
318
+ | 25.0804 | 7800 | 0.0 | - |
319
+ | 25.2412 | 7850 | 0.0 | - |
320
+ | 25.4019 | 7900 | 0.0 | - |
321
+ | 25.5627 | 7950 | 0.0 | - |
322
+ | 25.7235 | 8000 | 0.0 | - |
323
+ | 25.8842 | 8050 | 0.0 | - |
324
+ | 26.0450 | 8100 | 0.0 | - |
325
+ | 26.2058 | 8150 | 0.0 | - |
326
+ | 26.3666 | 8200 | 0.0 | - |
327
+ | 26.5273 | 8250 | 0.0 | - |
328
+ | 26.6881 | 8300 | 0.0 | - |
329
+ | 26.8489 | 8350 | 0.0 | - |
330
+ | 27.0096 | 8400 | 0.0 | - |
331
+ | 27.1704 | 8450 | 0.0 | - |
332
+ | 27.3312 | 8500 | 0.0 | - |
333
+ | 27.4920 | 8550 | 0.0 | - |
334
+ | 27.6527 | 8600 | 0.0 | - |
335
+ | 27.8135 | 8650 | 0.0 | - |
336
+ | 27.9743 | 8700 | 0.0 | - |
337
+ | 28.1350 | 8750 | 0.0 | - |
338
+ | 28.2958 | 8800 | 0.0 | - |
339
+ | 28.4566 | 8850 | 0.0 | - |
340
+ | 28.6174 | 8900 | 0.0 | - |
341
+ | 28.7781 | 8950 | 0.0 | - |
342
+ | 28.9389 | 9000 | 0.0 | - |
343
+ | 29.0997 | 9050 | 0.0 | - |
344
+ | 29.2605 | 9100 | 0.0 | - |
345
+ | 29.4212 | 9150 | 0.0 | - |
346
+ | 29.5820 | 9200 | 0.0 | - |
347
+ | 29.7428 | 9250 | 0.0 | - |
348
+ | 29.9035 | 9300 | 0.0 | - |
349
+
350
+ ### Framework Versions
351
+ - Python: 3.10.12
352
+ - SetFit: 1.1.0
353
+ - Sentence Transformers: 3.3.1
354
+ - Transformers: 4.44.2
355
+ - PyTorch: 2.2.0a0+81ea7a4
356
+ - Datasets: 3.2.0
357
+ - Tokenizers: 0.19.1
358
+
359
+ ## Citation
360
+
361
+ ### BibTeX
362
+ ```bibtex
363
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
364
+ doi = {10.48550/ARXIV.2209.11055},
365
+ url = {https://arxiv.org/abs/2209.11055},
366
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
367
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
368
+ title = {Efficient Few-Shot Learning Without Prompts},
369
+ publisher = {arXiv},
370
+ year = {2022},
371
+ copyright = {Creative Commons Attribution 4.0 International}
372
+ }
373
+ ```
374
+
375
+ <!--
376
+ ## Glossary
377
+
378
+ *Clearly define terms in order to be accessible across audiences.*
379
+ -->
380
+
381
+ <!--
382
+ ## Model Card Authors
383
+
384
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
385
+ -->
386
+
387
+ <!--
388
+ ## Model Card Contact
389
+
390
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
391
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test_flat_top",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e69a0cf17b4805ddac4b4e06ae151608db73544a5f28b81170153478e6655f18
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0950ed280535dc1d3c27fdbd3dce74147eaa5535e9246ab9784c019aac22190d
3
+ size 25479
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff