File size: 11,256 Bytes
d7ab1b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: (시흥점)루이까또즈 여성 3단 반지갑 SP3HT03IV 아이보리_ONE SIZE 신세계프리미엄아울렛
- text: 닥스 악세서리 남성 22FW populet 로고패턴 소가죽 반지갑 WBWA2F729BK 정품(Best Quality)스토어
- text: '베노베로 (23FW) 알렉스 소프트 엠보 소가죽 미니중지갑 BJF1ACP1201K1-BS 블랙(선물아님) '
- text: '[갤러리아] [헤지스ACC] HIHO2F602G2 [LEENA] 그레이 배색 가죽 목걸이카드홀더(한화갤러리아㈜ 센터시티) 한화갤러리아(주)'
- text: '[롯데백화점]라코스테 24SS (여성) 데일리 라이프스타일 지퍼 반지갑 [NF4375D54G 000 YDP] 롯데백화점_'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7924514420247204
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 | <ul><li>'해킹방지 카본 카드지갑 RFID 도난방지 자석오토지갑 블랙 화인트레이드'</li><li>'[라코스테](천안아산점)더 블렌드 포켓 오거나이저(NH4134L54GH45) 신세계백화점'</li><li>'닥스_핸드백 (선물포장)(DAKS X DISNEY) 미키마우스 가죽배색 체크 여성 카드 롯데백화점2관'</li></ul> |
| 1.0 | <ul><li>'이케아 KNOLIG 크뇔리그 동전지갑 소품 가방 주머니 참 인테리어 색상_옐로우 호랑이스토어5'</li><li>'레오파드 미니 동전지갑 캐리어파우치 폰토스(Pontos)'</li><li>'[비비안웨스트우드][비비안 웨스트우드] 조르단 더블 프레임 동전지갑 52020041 L001J N403(김해점) ONE SIZE 신세계백화점'</li></ul> |
| 5.0 | <ul><li>'BEANPOLE] 빈폴 ACC 스트랩 파우치/카드 SET 블랙/핑크(BE04A4W995) 블랙 메가 세일'</li><li>'지갑& 벨트01G1295Z8K외5종/피에르가르뎅_핸드백 01G1295Z8K 롯데쇼핑(주)'</li><li>'[빈폴 ACC] 스트랩 파우치/카드 SET 블랙 (BE04A4W995) 블랙_one size 윈아이'</li></ul> |
| 4.0 | <ul><li>'[헤지스ACC]HJHO3F332W2/[23FW] 브라운 로고패턴 가죽 키링 에이케이에스앤디 (주) AK인터넷쇼핑몰'</li><li>'[롯데백화점]닥스ACC [선물포장/쇼핑백동봉] 블랙 로고패턴 가죽 키링 DBHO4E138 롯데백화점_'</li><li>'[선물포장] HJHO3E281BK_남성 블랙 퍼피로고 체크배색 키링/헤지스ACC 롯데쇼핑(주)'</li></ul> |
| 0.0 | <ul><li>'타미힐피거 타미힐피거 남성반지갑 31TL22X046 블랙 네이비 네이비 SK스토아모바일'</li><li>'[선물포장] DBWA3F717W3 브라운 악어가죽/닥스ACC 롯데쇼핑(주)'</li><li>'[헤지스 액세서리] [24SS] HJWA4E906BK Online 한정판BASIC 블랙 솔리드 퍼피로고 소 XXX '</li></ul> |
| 3.0 | <ul><li>'여성반지갑 SL3AL04BL/루이까또즈 BLACK 롯데쇼핑(주)'</li><li>'MINI POCKET - BLACK 주식회사 이코컴퍼니'</li><li>'[롯데백화점]닥스ACC [선물포장/쇼핑백동봉]브라운 체크 가죽 핸드폰케이스 DCHO2F328W2 롯데백화점_'</li></ul> |
| 7.0 | <ul><li>'동지갑 베트남 환전 통장 여행 슬림 파우치 다낭 해외 지퍼 여권 03. 블랙 동쯔몰'</li><li>'도장 가방 인감 스탬프 케이스 수납 문서 보관 통장 V번 인감 수납가방 홍마켓(hong)'</li><li>'여행용 여권 파우치 목걸이 수납 휴대용 보호커버 블루 나이스쇼핑'</li></ul> |
| 2.0 | <ul><li>'[갤러리아] 8059461 MS CHASE GC9 B2871 ONE SIZE 한화갤러리아(주)'</li><li>'국내발송 MATIN KIM 마땡킴 GLOSSY CAMP WALLET IN WHITE MK2311WL001M0WH FREE 말로스'</li><li>'[헤지스](신세계본점)[HAZZYS ACC] [GOLDEN LANE] 블랙 로고패턴 소가죽 반지갑 HJWA1F562BK 주식회사 에스에스지닷컴'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.7925 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac14")
# Run inference
preds = model("(시흥점)루이까또즈 여성 3단 반지갑 SP3HT03IV 아이보리_ONE SIZE 신세계프리미엄아울렛")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.21 | 19 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 50 |
| 6.0 | 50 |
| 7.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0159 | 1 | 0.3853 | - |
| 0.7937 | 50 | 0.2743 | - |
| 1.5873 | 100 | 0.1039 | - |
| 2.3810 | 150 | 0.0564 | - |
| 3.1746 | 200 | 0.0306 | - |
| 3.9683 | 250 | 0.0124 | - |
| 4.7619 | 300 | 0.0146 | - |
| 5.5556 | 350 | 0.0008 | - |
| 6.3492 | 400 | 0.0007 | - |
| 7.1429 | 450 | 0.0001 | - |
| 7.9365 | 500 | 0.0001 | - |
| 8.7302 | 550 | 0.0001 | - |
| 9.5238 | 600 | 0.0001 | - |
| 10.3175 | 650 | 0.0001 | - |
| 11.1111 | 700 | 0.0001 | - |
| 11.9048 | 750 | 0.0001 | - |
| 12.6984 | 800 | 0.0001 | - |
| 13.4921 | 850 | 0.0001 | - |
| 14.2857 | 900 | 0.0001 | - |
| 15.0794 | 950 | 0.0 | - |
| 15.8730 | 1000 | 0.0001 | - |
| 16.6667 | 1050 | 0.0 | - |
| 17.4603 | 1100 | 0.0 | - |
| 18.2540 | 1150 | 0.0 | - |
| 19.0476 | 1200 | 0.0 | - |
| 19.8413 | 1250 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |