File size: 11,256 Bytes
d7ab1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: (시흥점)루이까또즈 여성 3 반지갑 SP3HT03IV 아이보리_ONE SIZE 신세계프리미엄아울렛
- text: 닥스 악세서리 남성 22FW populet 로고패턴 소가죽 반지갑 WBWA2F729BK  정품(Best Quality)스토어
- text: '베노베로 (23FW) 알렉스 소프트 엠보 소가죽 미니중지갑 BJF1ACP1201K1-BS 블랙(선물아님) '
- text: '[갤러리아] [헤지스ACC] HIHO2F602G2 [LEENA] 그레이 배색 가죽 목걸이카드홀더(한화갤러리아㈜ 센터시티)  한화갤러리아(주)'
- text: '[롯데백화점]라코스테 24SS (여성) 데일리 라이프스타일 지퍼 반지갑 [NF4375D54G 000 YDP]  롯데백화점_'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.7924514420247204
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                              |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'해킹방지 카본 카드지갑 RFID 도난방지 자석오토지갑 블랙 화인트레이드'</li><li>'[라코스테](천안아산점)더 블렌드 포켓 오거나이저(NH4134L54GH45)  신세계백화점'</li><li>'닥스_핸드백 (선물포장)(DAKS X DISNEY) 미키마우스 가죽배색 체크 여성 카드  롯데백화점2관'</li></ul>                                                          |
| 1.0   | <ul><li>'이케아 KNOLIG 크뇔리그 동전지갑 소품 가방 주머니 참 인테리어 색상_옐로우 호랑이스토어5'</li><li>'레오파드 미니 동전지갑 캐리어파우치  폰토스(Pontos)'</li><li>'[비비안웨스트우드][비비안 웨스트우드] 조르단 더블 프레임 동전지갑 52020041 L001J N403(김해점) ONE SIZE 신세계백화점'</li></ul>                                          |
| 5.0   | <ul><li>'BEANPOLE] 빈폴 ACC 스트랩 파우치/카드 SET 블랙/핑크(BE04A4W995) 블랙 메가 세일'</li><li>'지갑& 벨트01G1295Z8K외5종/피에르가르뎅_핸드백 01G1295Z8K 롯데쇼핑(주)'</li><li>'[빈폴 ACC] 스트랩 파우치/카드 SET 블랙 (BE04A4W995) 블랙_one size 윈아이'</li></ul>                                          |
| 4.0   | <ul><li>'[헤지스ACC]HJHO3F332W2/[23FW] 브라운 로고패턴 가죽 키링  에이케이에스앤디 (주) AK인터넷쇼핑몰'</li><li>'[롯데백화점]닥스ACC [선물포장/쇼핑백동봉] 블랙 로고패턴 가죽 키링 DBHO4E138  롯데백화점_'</li><li>'[선물포장] HJHO3E281BK_남성 블랙 퍼피로고 체크배색 키링/헤지스ACC  롯데쇼핑(주)'</li></ul>                              |
| 0.0   | <ul><li>'타미힐피거 타미힐피거 남성반지갑 31TL22X046 블랙 네이비 네이비 SK스토아모바일'</li><li>'[선물포장] DBWA3F717W3 브라운 악어가죽/닥스ACC  롯데쇼핑(주)'</li><li>'[헤지스 액세서리] [24SS] HJWA4E906BK Online 한정판BASIC 블랙 솔리드 퍼피로고 소 XXX '</li></ul>                                                  |
| 3.0   | <ul><li>'여성반지갑 SL3AL04BL/루이까또즈 BLACK 롯데쇼핑(주)'</li><li>'MINI POCKET - BLACK  주식회사 이코컴퍼니'</li><li>'[롯데백화점]닥스ACC [선물포장/쇼핑백동봉]브라운 체크 가죽 핸드폰케이스 DCHO2F328W2  롯데백화점_'</li></ul>                                                                             |
| 7.0   | <ul><li>'동지갑 베트남 환전 통장 여행 슬림 파우치 다낭 해외 지퍼 여권 03. 블랙 동쯔몰'</li><li>'도장 가방 인감 스탬프 케이스 수납 문서 보관 통장 V번 인감 수납가방 홍마켓(hong)'</li><li>'여행용 여권 파우치 목걸이 수납 휴대용 보호커버 블루 나이스쇼핑'</li></ul>                                                                          |
| 2.0   | <ul><li>'[갤러리아] 8059461 MS CHASE GC9 B2871 ONE SIZE 한화갤러리아(주)'</li><li>'국내발송 MATIN KIM 마땡킴 GLOSSY CAMP WALLET IN WHITE MK2311WL001M0WH FREE 말로스'</li><li>'[헤지스](신세계본점)[HAZZYS ACC] [GOLDEN LANE] 블랙 로고패턴 소가죽 반지갑 HJWA1F562BK  주식회사 에스에스지닷컴'</li></ul> |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.7925 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac14")
# Run inference
preds = model("(시흥점)루이까또즈 여성 3단 반지갑 SP3HT03IV 아이보리_ONE SIZE 신세계프리미엄아울렛")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.21   | 19  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |
| 7.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0159  | 1    | 0.3853        | -               |
| 0.7937  | 50   | 0.2743        | -               |
| 1.5873  | 100  | 0.1039        | -               |
| 2.3810  | 150  | 0.0564        | -               |
| 3.1746  | 200  | 0.0306        | -               |
| 3.9683  | 250  | 0.0124        | -               |
| 4.7619  | 300  | 0.0146        | -               |
| 5.5556  | 350  | 0.0008        | -               |
| 6.3492  | 400  | 0.0007        | -               |
| 7.1429  | 450  | 0.0001        | -               |
| 7.9365  | 500  | 0.0001        | -               |
| 8.7302  | 550  | 0.0001        | -               |
| 9.5238  | 600  | 0.0001        | -               |
| 10.3175 | 650  | 0.0001        | -               |
| 11.1111 | 700  | 0.0001        | -               |
| 11.9048 | 750  | 0.0001        | -               |
| 12.6984 | 800  | 0.0001        | -               |
| 13.4921 | 850  | 0.0001        | -               |
| 14.2857 | 900  | 0.0001        | -               |
| 15.0794 | 950  | 0.0           | -               |
| 15.8730 | 1000 | 0.0001        | -               |
| 16.6667 | 1050 | 0.0           | -               |
| 17.4603 | 1100 | 0.0           | -               |
| 18.2540 | 1150 | 0.0           | -               |
| 19.0476 | 1200 | 0.0           | -               |
| 19.8413 | 1250 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->