import torch import torch.nn as nn from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from typing import Optional, Callable from .rpe_options import make_kprpe_shared, make_kprpe_input from .RPE import build_rpe class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class VITBatchNorm(nn.Module): def __init__(self, num_features): super().__init__() self.num_features = num_features self.bn = nn.BatchNorm1d(num_features=num_features) def forward(self, x): return self.bn(x) class Attention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_scale: Optional[None] = None, attn_drop: float = 0., proj_drop: float = 0., rpe_config=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) # image relative position encoding self.rpe_config = rpe_config self.rpe_q, self.rpe_k, self.rpe_v = build_rpe(rpe_config, head_dim=head_dim, num_heads=num_heads) def forward(self, x, extra_ctx=None): batch_size, num_token, embed_dim = x.shape #qkv is [3,batch_size,num_heads,num_token, embed_dim//num_heads] qkv = self.qkv(x).reshape( batch_size, num_token, 3, self.num_heads, embed_dim // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q *= self.scale attn = (q @ k.transpose(-2, -1)) # image relative position on keys if self.rpe_k is not None: ctx = extra_ctx['rel_keypoints'] attn += self.rpe_k(ctx) # image relative position on queries if self.rpe_q is not None: attn += self.rpe_q(k * self.scale).transpose(2, 3) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) out = attn @ v # image relative position on values if self.rpe_v is not None: out += self.rpe_v(attn) x = out.transpose(1, 2).reshape(batch_size, num_token, embed_dim) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim: int, num_heads: int, num_patches: int, mlp_ratio: float = 4., qkv_bias: bool = False, qk_scale: Optional[None] = None, drop: float = 0., attn_drop: float = 0., drop_path: float = 0., act_layer: Callable = nn.ReLU6, norm_layer: str = "ln", patch_n: int = 144, rpe_config=None): super().__init__() if norm_layer == "bn": self.norm1 = VITBatchNorm(num_features=num_patches) self.norm2 = VITBatchNorm(num_features=num_patches) elif norm_layer == "ln": self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, rpe_config=rpe_config) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.extra_gflops = (num_heads * patch_n * (dim//num_heads)*patch_n * 2) / (1000**3) def forward(self, x, extra_ctx=None): norm_x = self.norm1(x) attn_out = self.attn(norm_x, extra_ctx=extra_ctx) x = x + self.drop_path(attn_out) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): def __init__(self, img_size=108, patch_size=9, in_channels=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): batch_size, channels, height, width = x.shape assert height == self.img_size[0] and width == self.img_size[1], \ f"Input image size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class VisionTransformerWithKPRPE(nn.Module): """ Vision Transformer with auxiliary keypoint inputs for KP-RPE """ def __init__(self, img_size: int = 112, patch_size: int = 16, in_channels: int = 3, num_classes: int = 1000, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4., qkv_bias: bool = False, qk_scale: Optional[None] = None, drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., num_patches: Optional[int] = None, norm_layer: str = "ln", mask_ratio = 0.1, using_checkpoint = False, rpe_config=None, ): super().__init__() self.num_classes = num_classes # num_features for consistency with other models self.num_features = self.embed_dim = embed_dim if num_patches is not None: self.patch_embed = nn.Identity() else: self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.mask_ratio = mask_ratio self.using_checkpoint = using_checkpoint self.num_patches = num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] patch_n = (img_size//patch_size)**2 self.blocks = nn.ModuleList( [ Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, num_patches=num_patches, patch_n=patch_n, rpe_config=rpe_config) for i in range(depth)] ) self.extra_gflops = 0.0 for _block in self.blocks: self.extra_gflops += _block.extra_gflops if norm_layer == "ln": self.norm = nn.LayerNorm(embed_dim) elif norm_layer == "bn": self.norm = VITBatchNorm(self.num_patches) # features head self.feature = nn.Sequential( nn.Linear(in_features=embed_dim * num_patches, out_features=embed_dim, bias=False), nn.BatchNorm1d(num_features=embed_dim, eps=2e-5), nn.Linear(in_features=embed_dim, out_features=num_classes, bias=False), nn.BatchNorm1d(num_features=num_classes, eps=2e-5) ) if self.mask_ratio == 0: pass else: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) torch.nn.init.normal_(self.mask_token, std=.02) trunc_normal_(self.pos_embed, std=.02) # trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.num_heads = num_heads self.depth = depth self.rpe_config = rpe_config self.keypoint_linear, self.num_buckets = make_kprpe_shared(rpe_config, depth, num_heads) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def random_masking(self, x, mask_ratio=0.1): N, L, D = x.size() # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] # sort noise for each sample # ascend: small is keep, large is remove ids_shuffle = torch.argsort(noise, dim=1) ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] index = ids_keep.unsqueeze(-1).repeat(1, 1, D) x_masked = torch.gather(x, dim=1, index=index) return x_masked, index, ids_restore def forward_features(self, x, keypoints=None): B = x.shape[0] x = self.patch_embed(x) x = x + self.pos_embed x = self.pos_drop(x) if self.training and self.mask_ratio > 0: x, _, ids_restore = self.random_masking(x) extra_ctx = make_kprpe_input(keypoints, x, self.keypoint_linear, self.rpe_config, self.mask_ratio, self.depth, self.num_heads, self.num_buckets) for block_idx, func in enumerate(self.blocks): if isinstance(extra_ctx, list): extra_ctx_ = extra_ctx[block_idx] else: extra_ctx_ = extra_ctx if self.using_checkpoint and self.training: from torch.utils.checkpoint import checkpoint x = checkpoint(func, x, extra_ctx_) else: x = func(x, extra_ctx=extra_ctx_) x = self.norm(x.float()) if self.training and self.mask_ratio > 0: mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1) x_ = torch.cat([x[:, :, :], mask_tokens], dim=1) # no cls token x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle x = x_ return torch.reshape(x, (B, self.num_patches * self.embed_dim)) def forward(self, x, keypoints=None): x = self.forward_features(x, keypoints=keypoints) x = self.feature(x) return x