--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - linnaeus metrics: - precision - recall - f1 - accuracy model-index: - name: bert-linnaeus-ner results: - task: name: Token Classification type: token-classification dataset: name: linnaeus type: linnaeus config: linnaeus split: validation args: linnaeus metrics: - name: Precision type: precision value: 0.9223433242506812 - name: Recall type: recall value: 0.9521800281293952 - name: F1 type: f1 value: 0.9370242214532872 - name: Accuracy type: accuracy value: 0.9985110458648063 widget: - text: "Streptococcus suis (S. suis) is an important zoonosis and pathogen that can carry prophages." - text: "Lactobacillus plantarum is an important probiotic and is mostly isolated from fermented foods." inference: parameters: aggregation_strategy: "first" --- # bert-linnaeus-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the linnaeus dataset. It achieves the following results on the evaluation set: - Loss: 0.0073 - Precision: 0.9223 - Recall: 0.9522 - F1: 0.9370 - Accuracy: 0.9985 ## Model description This model can be used to find organisms and species in text data. NB. THIS MODEL IS WIP AND IS SUBJECT TO CHANGE! ## Intended uses & limitations This model's intended use is in my Master's thesis to mask names of bacteria (and phages) for further analysis. ## Training and evaluation data Linnaeus dataset was used to train and validate the performance. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0076 | 1.0 | 1492 | 0.0128 | 0.8566 | 0.9578 | 0.9044 | 0.9967 | | 0.0024 | 2.0 | 2984 | 0.0082 | 0.9092 | 0.9578 | 0.9329 | 0.9980 | | 0.0007 | 3.0 | 4476 | 0.0073 | 0.9223 | 0.9522 | 0.9370 | 0.9985 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.0