Upload configuration_deepseek.py with huggingface_hub
Browse files- configuration_deepseek.py +206 -0
    	
        configuration_deepseek.py
    ADDED
    
    | @@ -0,0 +1,206 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 2 | 
            +
            from transformers.utils import logging
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 7 | 
            +
            class DeepseekV2Config(PretrainedConfig):
         | 
| 8 | 
            +
                r"""
         | 
| 9 | 
            +
                This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
         | 
| 10 | 
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         | 
| 11 | 
            +
                defaults will yield a similar configuration to that of the DeepSeek-V2.
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 14 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
                Args:
         | 
| 18 | 
            +
                    vocab_size (`int`, *optional*, defaults to 102400):
         | 
| 19 | 
            +
                        Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
         | 
| 20 | 
            +
                        `inputs_ids` passed when calling [`DeepseekV2Model`]
         | 
| 21 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 22 | 
            +
                        Dimension of the hidden representations.
         | 
| 23 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 24 | 
            +
                        Dimension of the MLP representations.
         | 
| 25 | 
            +
                    moe_intermediate_size (`int`, *optional*, defaults to 1407):
         | 
| 26 | 
            +
                        Dimension of the MoE representations.
         | 
| 27 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 28 | 
            +
                        Number of hidden layers in the Transformer decoder.
         | 
| 29 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 30 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 31 | 
            +
                    n_shared_experts (`int`, *optional*, defaults to None):
         | 
| 32 | 
            +
                        Number of shared experts, None means dense model.
         | 
| 33 | 
            +
                    n_routed_experts (`int`, *optional*, defaults to None):
         | 
| 34 | 
            +
                        Number of routed experts, None means dense model.
         | 
| 35 | 
            +
                    routed_scaling_factor (`float`, *optional*, defaults to 1.0):
         | 
| 36 | 
            +
                        Scaling factor or routed experts.
         | 
| 37 | 
            +
                    topk_method (`str`, *optional*, defaults to `gready`):
         | 
| 38 | 
            +
                        Topk method used in routed gate.
         | 
| 39 | 
            +
                    n_group (`int`, *optional*, defaults to None):
         | 
| 40 | 
            +
                        Number of groups for routed experts.
         | 
| 41 | 
            +
                    topk_group (`int`, *optional*, defaults to None):
         | 
| 42 | 
            +
                        Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
         | 
| 43 | 
            +
                    num_experts_per_tok (`int`, *optional*, defaults to None):
         | 
| 44 | 
            +
                        Number of selected experts, None means dense model.
         | 
| 45 | 
            +
                    moe_layer_freq (`int`, *optional*, defaults to 1):
         | 
| 46 | 
            +
                        The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
         | 
| 47 | 
            +
                    first_k_dense_replace (`int`, *optional*, defaults to 0):
         | 
| 48 | 
            +
                        Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
         | 
| 49 | 
            +
                                                                        \--k dense layers--/
         | 
| 50 | 
            +
                    norm_topk_prob (`bool`, *optional*, defaults to False):
         | 
| 51 | 
            +
                        Whether to normalize the weights of the routed experts.
         | 
| 52 | 
            +
                    scoring_func (`str`, *optional*, defaults to 'softmax'):
         | 
| 53 | 
            +
                        Method of computing expert weights.
         | 
| 54 | 
            +
                    aux_loss_alpha (`float`, *optional*, defaults to 0.001):
         | 
| 55 | 
            +
                        Auxiliary loss weight coefficient.
         | 
| 56 | 
            +
                    seq_aux = (`bool`, *optional*, defaults to True):
         | 
| 57 | 
            +
                        Whether to compute the auxiliary loss for each individual sample.
         | 
| 58 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 59 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 60 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 61 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 62 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 63 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 64 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 65 | 
            +
                        `num_attention_heads`.
         | 
| 66 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 67 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 68 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 69 | 
            +
                        The maximum sequence length that this model might ever be used with.
         | 
| 70 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 71 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 72 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         | 
| 73 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 74 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 75 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 76 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 77 | 
            +
                    pad_token_id (`int`, *optional*):
         | 
| 78 | 
            +
                        Padding token id.
         | 
| 79 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 80 | 
            +
                        Beginning of stream token id.
         | 
| 81 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 82 | 
            +
                        End of stream token id.
         | 
| 83 | 
            +
                    pretraining_tp (`int`, *optional*, defaults to 1):
         | 
| 84 | 
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         | 
| 85 | 
            +
                        document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
         | 
| 86 | 
            +
                        necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
         | 
| 87 | 
            +
                        issue](https://github.com/pytorch/pytorch/issues/76232).
         | 
| 88 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 89 | 
            +
                        Whether to tie weight embeddings
         | 
| 90 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 91 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 92 | 
            +
                    rope_scaling (`Dict`, *optional*):
         | 
| 93 | 
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
         | 
| 94 | 
            +
                        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
         | 
| 95 | 
            +
                        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
         | 
| 96 | 
            +
                        `max_position_embeddings` to the expected new maximum.
         | 
| 97 | 
            +
                    attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
         | 
| 98 | 
            +
                        Whether to use a bias in the query, key, value and output projection layers during self-attention.
         | 
| 99 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 100 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                ```python
         | 
| 103 | 
            +
                >>> from transformers import DeepseekV2Model, DeepseekV2Config
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                >>> # Initializing a Deepseek-V2 style configuration
         | 
| 106 | 
            +
                >>> configuration = DeepseekV2Config()
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                >>> # Accessing the model configuration
         | 
| 109 | 
            +
                >>> configuration = model.config
         | 
| 110 | 
            +
                ```"""
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                model_type = "deepseek_v2"
         | 
| 113 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                def __init__(
         | 
| 116 | 
            +
                    self,
         | 
| 117 | 
            +
                    vocab_size=102400,
         | 
| 118 | 
            +
                    hidden_size=4096,
         | 
| 119 | 
            +
                    intermediate_size=11008,
         | 
| 120 | 
            +
                    moe_intermediate_size = 1407,
         | 
| 121 | 
            +
                    num_hidden_layers=30,
         | 
| 122 | 
            +
                    num_attention_heads=32,
         | 
| 123 | 
            +
                    num_key_value_heads=32,
         | 
| 124 | 
            +
                    n_shared_experts = None,
         | 
| 125 | 
            +
                    n_routed_experts = None,
         | 
| 126 | 
            +
                    ep_size = 1,
         | 
| 127 | 
            +
                    routed_scaling_factor = 1.0,
         | 
| 128 | 
            +
                    kv_lora_rank = 512,
         | 
| 129 | 
            +
                    q_lora_rank = 1536,
         | 
| 130 | 
            +
                    qk_rope_head_dim = 64,
         | 
| 131 | 
            +
                    v_head_dim = 128,
         | 
| 132 | 
            +
                    qk_nope_head_dim = 128,
         | 
| 133 | 
            +
                    topk_method = 'gready',
         | 
| 134 | 
            +
                    n_group = None,
         | 
| 135 | 
            +
                    topk_group = None,
         | 
| 136 | 
            +
                    num_experts_per_tok = None,
         | 
| 137 | 
            +
                    moe_layer_freq = 1,
         | 
| 138 | 
            +
                    first_k_dense_replace = 0,
         | 
| 139 | 
            +
                    norm_topk_prob = False,
         | 
| 140 | 
            +
                    scoring_func = 'softmax',
         | 
| 141 | 
            +
                    aux_loss_alpha = 0.001,
         | 
| 142 | 
            +
                    seq_aux = True,
         | 
| 143 | 
            +
                    hidden_act="silu",
         | 
| 144 | 
            +
                    max_position_embeddings=2048,
         | 
| 145 | 
            +
                    initializer_range=0.02,
         | 
| 146 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 147 | 
            +
                    use_cache=True,
         | 
| 148 | 
            +
                    pad_token_id=None,
         | 
| 149 | 
            +
                    bos_token_id=100000,
         | 
| 150 | 
            +
                    eos_token_id=100001,
         | 
| 151 | 
            +
                    pretraining_tp=1,
         | 
| 152 | 
            +
                    tie_word_embeddings=False,
         | 
| 153 | 
            +
                    rope_theta=10000.0,
         | 
| 154 | 
            +
                    rope_scaling=None,
         | 
| 155 | 
            +
                    attention_bias=False,
         | 
| 156 | 
            +
                    attention_dropout=0.0,
         | 
| 157 | 
            +
                    **kwargs,
         | 
| 158 | 
            +
                ):
         | 
| 159 | 
            +
                    self.vocab_size = vocab_size
         | 
| 160 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 161 | 
            +
                    self.hidden_size = hidden_size
         | 
| 162 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 163 | 
            +
                    self.moe_intermediate_size = moe_intermediate_size
         | 
| 164 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 165 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 166 | 
            +
                    self.n_shared_experts = n_shared_experts
         | 
| 167 | 
            +
                    self.n_routed_experts = n_routed_experts
         | 
| 168 | 
            +
                    self.ep_size = ep_size
         | 
| 169 | 
            +
                    self.routed_scaling_factor = routed_scaling_factor
         | 
| 170 | 
            +
                    self.kv_lora_rank = kv_lora_rank
         | 
| 171 | 
            +
                    self.q_lora_rank = q_lora_rank
         | 
| 172 | 
            +
                    self.qk_rope_head_dim = qk_rope_head_dim
         | 
| 173 | 
            +
                    self.v_head_dim = v_head_dim
         | 
| 174 | 
            +
                    self.qk_nope_head_dim = qk_nope_head_dim
         | 
| 175 | 
            +
                    self.topk_method = topk_method
         | 
| 176 | 
            +
                    self.n_group = n_group
         | 
| 177 | 
            +
                    self.topk_group = topk_group
         | 
| 178 | 
            +
                    self.num_experts_per_tok = num_experts_per_tok
         | 
| 179 | 
            +
                    self.moe_layer_freq = moe_layer_freq
         | 
| 180 | 
            +
                    self.first_k_dense_replace = first_k_dense_replace
         | 
| 181 | 
            +
                    self.norm_topk_prob = norm_topk_prob
         | 
| 182 | 
            +
                    self.scoring_func = scoring_func
         | 
| 183 | 
            +
                    self.aux_loss_alpha = aux_loss_alpha
         | 
| 184 | 
            +
                    self.seq_aux = seq_aux
         | 
| 185 | 
            +
                    # for backward compatibility
         | 
| 186 | 
            +
                    if num_key_value_heads is None:
         | 
| 187 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 190 | 
            +
                    self.hidden_act = hidden_act
         | 
| 191 | 
            +
                    self.initializer_range = initializer_range
         | 
| 192 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 193 | 
            +
                    self.pretraining_tp = pretraining_tp
         | 
| 194 | 
            +
                    self.use_cache = use_cache
         | 
| 195 | 
            +
                    self.rope_theta = rope_theta
         | 
| 196 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 197 | 
            +
                    self.attention_bias = attention_bias
         | 
| 198 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    super().__init__(
         | 
| 201 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 202 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 203 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 204 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 205 | 
            +
                        **kwargs,
         | 
| 206 | 
            +
                    )
         | 
