midoiv commited on
Commit
cfa0992
·
1 Parent(s): f109f28

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: Audio_CREMA
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # Audio_CREMA
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.8274
20
+ - Accuracy: 0.7909
21
+ - Weighted f1: 0.7913
22
+ - Micro f1: 0.7909
23
+ - Macro f1: 0.7909
24
+ - Weighted recall: 0.7909
25
+ - Micro recall: 0.7909
26
+ - Macro recall: 0.7945
27
+ - Weighted precision: 0.8014
28
+ - Micro precision: 0.7909
29
+ - Macro precision: 0.7976
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 3e-05
49
+ - train_batch_size: 32
50
+ - eval_batch_size: 32
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 15
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
61
+ | 1.0002 | 1.0 | 55 | 1.0265 | 0.5477 | 0.5159 | 0.5477 | 0.5169 | 0.5477 | 0.5477 | 0.5486 | 0.5338 | 0.5477 | 0.5341 |
62
+ | 0.8613 | 2.0 | 110 | 0.9630 | 0.5795 | 0.5540 | 0.5795 | 0.5558 | 0.5795 | 0.5795 | 0.5825 | 0.5737 | 0.5795 | 0.5718 |
63
+ | 0.7676 | 3.0 | 165 | 0.8474 | 0.6659 | 0.6655 | 0.6659 | 0.6624 | 0.6659 | 0.6659 | 0.6629 | 0.6746 | 0.6659 | 0.6713 |
64
+ | 0.6886 | 4.0 | 220 | 0.9269 | 0.6318 | 0.6203 | 0.6318 | 0.6198 | 0.6318 | 0.6318 | 0.6351 | 0.6581 | 0.6318 | 0.6506 |
65
+ | 0.6536 | 5.0 | 275 | 0.7114 | 0.7341 | 0.7364 | 0.7341 | 0.7350 | 0.7341 | 0.7341 | 0.7360 | 0.7472 | 0.7341 | 0.7424 |
66
+ | 0.4429 | 6.0 | 330 | 0.7026 | 0.7432 | 0.7419 | 0.7432 | 0.7406 | 0.7432 | 0.7432 | 0.7425 | 0.7417 | 0.7432 | 0.7399 |
67
+ | 0.3755 | 7.0 | 385 | 0.6925 | 0.7682 | 0.7679 | 0.7682 | 0.7680 | 0.7682 | 0.7682 | 0.7717 | 0.7743 | 0.7682 | 0.7712 |
68
+ | 0.3603 | 8.0 | 440 | 0.7445 | 0.7591 | 0.7608 | 0.7591 | 0.7604 | 0.7591 | 0.7591 | 0.7610 | 0.7740 | 0.7591 | 0.7716 |
69
+ | 0.296 | 9.0 | 495 | 0.7235 | 0.7614 | 0.7577 | 0.7614 | 0.7590 | 0.7614 | 0.7614 | 0.7669 | 0.7718 | 0.7614 | 0.7685 |
70
+ | 0.2854 | 10.0 | 550 | 0.6988 | 0.7818 | 0.7832 | 0.7818 | 0.7824 | 0.7818 | 0.7818 | 0.7840 | 0.7923 | 0.7818 | 0.7891 |
71
+ | 0.2655 | 11.0 | 605 | 0.7530 | 0.7568 | 0.7526 | 0.7568 | 0.7539 | 0.7568 | 0.7568 | 0.7618 | 0.7632 | 0.7568 | 0.7605 |
72
+ | 0.1359 | 12.0 | 660 | 0.7503 | 0.7955 | 0.7974 | 0.7955 | 0.7972 | 0.7955 | 0.7955 | 0.7997 | 0.8110 | 0.7955 | 0.8069 |
73
+ | 0.1258 | 13.0 | 715 | 0.8318 | 0.7659 | 0.7634 | 0.7659 | 0.7638 | 0.7659 | 0.7659 | 0.7710 | 0.7808 | 0.7659 | 0.7767 |
74
+ | 0.0731 | 14.0 | 770 | 0.8758 | 0.7727 | 0.7718 | 0.7727 | 0.7715 | 0.7727 | 0.7727 | 0.7766 | 0.7883 | 0.7727 | 0.7846 |
75
+ | 0.0676 | 15.0 | 825 | 0.8274 | 0.7909 | 0.7913 | 0.7909 | 0.7909 | 0.7909 | 0.7909 | 0.7945 | 0.8014 | 0.7909 | 0.7976 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.18.0
81
+ - Pytorch 1.11.0
82
+ - Datasets 2.1.0
83
+ - Tokenizers 0.12.1