update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: Audio_CREMA
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Audio_CREMA
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8274
|
20 |
+
- Accuracy: 0.7909
|
21 |
+
- Weighted f1: 0.7913
|
22 |
+
- Micro f1: 0.7909
|
23 |
+
- Macro f1: 0.7909
|
24 |
+
- Weighted recall: 0.7909
|
25 |
+
- Micro recall: 0.7909
|
26 |
+
- Macro recall: 0.7945
|
27 |
+
- Weighted precision: 0.8014
|
28 |
+
- Micro precision: 0.7909
|
29 |
+
- Macro precision: 0.7976
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 3e-05
|
49 |
+
- train_batch_size: 32
|
50 |
+
- eval_batch_size: 32
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 15
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
61 |
+
| 1.0002 | 1.0 | 55 | 1.0265 | 0.5477 | 0.5159 | 0.5477 | 0.5169 | 0.5477 | 0.5477 | 0.5486 | 0.5338 | 0.5477 | 0.5341 |
|
62 |
+
| 0.8613 | 2.0 | 110 | 0.9630 | 0.5795 | 0.5540 | 0.5795 | 0.5558 | 0.5795 | 0.5795 | 0.5825 | 0.5737 | 0.5795 | 0.5718 |
|
63 |
+
| 0.7676 | 3.0 | 165 | 0.8474 | 0.6659 | 0.6655 | 0.6659 | 0.6624 | 0.6659 | 0.6659 | 0.6629 | 0.6746 | 0.6659 | 0.6713 |
|
64 |
+
| 0.6886 | 4.0 | 220 | 0.9269 | 0.6318 | 0.6203 | 0.6318 | 0.6198 | 0.6318 | 0.6318 | 0.6351 | 0.6581 | 0.6318 | 0.6506 |
|
65 |
+
| 0.6536 | 5.0 | 275 | 0.7114 | 0.7341 | 0.7364 | 0.7341 | 0.7350 | 0.7341 | 0.7341 | 0.7360 | 0.7472 | 0.7341 | 0.7424 |
|
66 |
+
| 0.4429 | 6.0 | 330 | 0.7026 | 0.7432 | 0.7419 | 0.7432 | 0.7406 | 0.7432 | 0.7432 | 0.7425 | 0.7417 | 0.7432 | 0.7399 |
|
67 |
+
| 0.3755 | 7.0 | 385 | 0.6925 | 0.7682 | 0.7679 | 0.7682 | 0.7680 | 0.7682 | 0.7682 | 0.7717 | 0.7743 | 0.7682 | 0.7712 |
|
68 |
+
| 0.3603 | 8.0 | 440 | 0.7445 | 0.7591 | 0.7608 | 0.7591 | 0.7604 | 0.7591 | 0.7591 | 0.7610 | 0.7740 | 0.7591 | 0.7716 |
|
69 |
+
| 0.296 | 9.0 | 495 | 0.7235 | 0.7614 | 0.7577 | 0.7614 | 0.7590 | 0.7614 | 0.7614 | 0.7669 | 0.7718 | 0.7614 | 0.7685 |
|
70 |
+
| 0.2854 | 10.0 | 550 | 0.6988 | 0.7818 | 0.7832 | 0.7818 | 0.7824 | 0.7818 | 0.7818 | 0.7840 | 0.7923 | 0.7818 | 0.7891 |
|
71 |
+
| 0.2655 | 11.0 | 605 | 0.7530 | 0.7568 | 0.7526 | 0.7568 | 0.7539 | 0.7568 | 0.7568 | 0.7618 | 0.7632 | 0.7568 | 0.7605 |
|
72 |
+
| 0.1359 | 12.0 | 660 | 0.7503 | 0.7955 | 0.7974 | 0.7955 | 0.7972 | 0.7955 | 0.7955 | 0.7997 | 0.8110 | 0.7955 | 0.8069 |
|
73 |
+
| 0.1258 | 13.0 | 715 | 0.8318 | 0.7659 | 0.7634 | 0.7659 | 0.7638 | 0.7659 | 0.7659 | 0.7710 | 0.7808 | 0.7659 | 0.7767 |
|
74 |
+
| 0.0731 | 14.0 | 770 | 0.8758 | 0.7727 | 0.7718 | 0.7727 | 0.7715 | 0.7727 | 0.7727 | 0.7766 | 0.7883 | 0.7727 | 0.7846 |
|
75 |
+
| 0.0676 | 15.0 | 825 | 0.8274 | 0.7909 | 0.7913 | 0.7909 | 0.7909 | 0.7909 | 0.7909 | 0.7945 | 0.8014 | 0.7909 | 0.7976 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.18.0
|
81 |
+
- Pytorch 1.11.0
|
82 |
+
- Datasets 2.1.0
|
83 |
+
- Tokenizers 0.12.1
|