|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from datetime import datetime |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig |
|
from transformers.models.clip.modeling_clip import CLIPAttention |
|
from transformers.utils import logging |
|
|
|
try: |
|
from flash_attn import flash_attn_func |
|
except ImportError: |
|
pass |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig( |
|
attention_dropout=0.0, |
|
dropout=0.0, |
|
hidden_act="quick_gelu", |
|
hidden_size=1024, |
|
image_size=336, |
|
initializer_factor=1.0, |
|
initializer_range=0.02, |
|
intermediate_size=4096, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=16, |
|
num_channels=3, |
|
num_hidden_layers=24, |
|
patch_size=14, |
|
projection_dim=768 |
|
) |
|
|
|
class CLIPAttentionFA2(CLIPAttention): |
|
"""Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)""" |
|
|
|
def forward(self, |
|
hidden_states, |
|
attention_mask=None, |
|
causal_attention_mask=None, |
|
output_attentions=False, |
|
): |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask" |
|
assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask" |
|
assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions" |
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) |
|
key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) |
|
value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) |
|
|
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
causal=False, |
|
).reshape(bsz, tgt_len, embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
return attn_output, None |
|
|
|
|
|
class Phi3ImageEmbedding(nn.Module): |
|
"""Phi3 Image embedding.""" |
|
|
|
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None: |
|
super().__init__() |
|
|
|
|
|
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size |
|
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): |
|
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop |
|
self.drop = nn.Dropout(embd_drop) |
|
else: |
|
self.drop = None |
|
|
|
self.wte = wte |
|
|
|
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model': |
|
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel' |
|
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel' |
|
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel' |
|
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336' |
|
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG |
|
self.img_processor = CLIPVisionModel(clip_config) |
|
image_dim_out = config.img_processor['image_dim_out'] |
|
self.num_img_tokens = config.img_processor['num_img_tokens'] |
|
|
|
|
|
if config._attn_implementation == 'flash_attention_2': |
|
for layer in self.img_processor.vision_model.encoder.layers: |
|
clip_fa2 = CLIPAttentionFA2(clip_config) |
|
del layer.self_attn |
|
layer.self_attn = clip_fa2 |
|
else: |
|
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented') |
|
|
|
self.image_dim_out = image_dim_out |
|
self.img_sizes = None |
|
|
|
|
|
self.use_hd_transform = kwargs.get('use_hd_transform', False) |
|
self.with_learnable_separator = kwargs.get('with_learnable_separator', False) |
|
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') |
|
|
|
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' |
|
if self.with_learnable_separator: |
|
assert self.use_hd_transform, 'learnable separator is only for hd transform' |
|
|
|
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4])) |
|
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4])) |
|
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') |
|
|
|
projection_cls = kwargs.get('projection_cls', 'linear') |
|
if projection_cls == 'linear': |
|
self.img_projection = nn.Linear(image_dim_out, hidden_size) |
|
elif projection_cls == 'mlp' and self.use_hd_transform: |
|
dim_projection = hidden_size |
|
depth = 2 |
|
layers = [nn.Linear(image_dim_out * 4, dim_projection)] |
|
for _ in range(1, depth): |
|
layers.extend([nn.GELU(), |
|
nn.Linear(dim_projection, dim_projection)]) |
|
self.img_projection = nn.Sequential(*layers) |
|
elif projection_cls == 'mlp': |
|
dim_projection = hidden_size |
|
depth = 2 |
|
layers = [nn.Linear(image_dim_out, dim_projection)] |
|
for _ in range(1, depth): |
|
layers.extend([nn.GELU(), |
|
nn.Linear(dim_projection, dim_projection)]) |
|
self.img_projection = nn.Sequential(*layers) |
|
else: |
|
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') |
|
|
|
self.vocab_size = config.vocab_size |
|
self.img_features = None |
|
|
|
if isinstance(config.img_processor, dict): |
|
self.layer_idx = config.img_processor.get('layer_idx', -2) |
|
self.type_feature = config.img_processor.get('type_feature', 'patch') |
|
else: |
|
self.layer_idx = -2 |
|
self.type_feature = 'patch' |
|
|
|
|
|
def set_img_features(self, img_features: torch.FloatTensor) -> None: |
|
self.img_features = img_features |
|
|
|
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: |
|
self.img_sizes = img_sizes |
|
|
|
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor: |
|
LAYER_IDX = self.layer_idx |
|
TYPE_FEATURE = self.type_feature |
|
|
|
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) |
|
img_feature = img_processor_output.hidden_states[LAYER_IDX] |
|
|
|
if TYPE_FEATURE == "patch": |
|
patch_feature = img_feature[:, 1:] |
|
return patch_feature |
|
|
|
if TYPE_FEATURE == "cls_patch": |
|
return img_feature |
|
|
|
raise NotImplementedError |
|
|
|
def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor: |
|
|
|
MAX_INPUT_ID = int(1e9) |
|
img_embeds = pixel_values |
|
img_sizes = image_sizes |
|
|
|
if self.img_features is not None: |
|
img_embeds = self.img_features.clone() |
|
self.img_features = None |
|
|
|
if self.img_sizes is not None: |
|
img_sizes = self.img_sizes |
|
|
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
with torch.no_grad(): |
|
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False) |
|
|
|
select = False |
|
|
|
if isinstance(self.img_projection, nn.Sequential): |
|
target_device = self.img_projection[0].bias.device |
|
target_dtype = self.img_projection[0].bias.dtype |
|
else: |
|
target_device = self.img_projection.bias.device |
|
target_dtype = self.img_projection.bias.dtype |
|
|
|
if len(positions.tolist()) > 0: |
|
with torch.no_grad(): |
|
g_values = abs(input_ids[positions[:, 0], positions[:, 1]]) |
|
|
|
if self.use_hd_transform and img_sizes is not None and len(img_sizes): |
|
hd_transform = True |
|
assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform' |
|
|
|
|
|
|
|
start_time = datetime.now() |
|
bs = img_embeds.shape[0] |
|
|
|
img_features = self.get_img_features(img_embeds.flatten(0, 1)) |
|
base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5) |
|
|
|
assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform' |
|
|
|
|
|
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out) |
|
C = self.image_dim_out |
|
H = base_feat_height |
|
|
|
output_imgs = [] |
|
output_len = [] |
|
|
|
if isinstance(img_sizes, torch.Tensor): |
|
img_sizes = img_sizes.view(-1, 2) |
|
for _bs in range(bs): |
|
h, w = img_sizes[_bs] |
|
h = h // 336 |
|
w = w // 336 |
|
B_ = h * w |
|
|
|
|
|
global_img_feature = img_features[_bs, :1] |
|
|
|
|
|
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous() |
|
temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1) |
|
|
|
|
|
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C) |
|
|
|
|
|
sub_img = img_features[_bs, 1:] |
|
|
|
|
|
sub_img = sub_img[:B_] |
|
|
|
|
|
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous() |
|
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C) |
|
temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1) |
|
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C) |
|
|
|
|
|
|
|
if self.hd_transform_order == 'glb_sub': |
|
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1)) |
|
elif self.hd_transform_order == 'sub_glb': |
|
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1)) |
|
else: |
|
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented') |
|
|
|
temp_len = int((h*w+1)*144 + 1 + (h+1)*12) |
|
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}' |
|
output_len.append(temp_len) |
|
|
|
num_img_tokens = output_len |
|
img_set_tensor = [] |
|
for _output_img in output_imgs: |
|
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype)) |
|
img_set_tensor.append(img_feature_proj) |
|
logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}') |
|
elif img_embeds.ndim == 4: |
|
selected_g_values = g_values[::self.num_img_tokens] |
|
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}' |
|
start_time = datetime.now() |
|
tt = ( |
|
self.get_img_features(img_embeds) |
|
.to(target_device) |
|
.to(target_dtype) |
|
.reshape(-1, self.image_dim_out) |
|
) |
|
logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}') |
|
img_set_tensor = self.img_projection(tt) |
|
elif img_embeds.ndim == 3: |
|
selected_g_values = g_values[::self.num_img_tokens] |
|
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}' |
|
tt = ( |
|
img_embeds |
|
.to(target_device) |
|
.to(target_dtype) |
|
.view(-1, self.image_dim_out) |
|
) |
|
img_set_tensor = self.img_projection(tt) |
|
else: |
|
raise NotImplementedError |
|
select = True |
|
|
|
with torch.no_grad(): |
|
input_ids.clamp_min_(0).clamp_max_(self.vocab_size) |
|
|
|
hidden_states = self.wte(input_ids) |
|
|
|
if select: |
|
if hd_transform: |
|
idx = 0 |
|
for i, cnt in enumerate(num_img_tokens): |
|
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = ( |
|
img_set_tensor[i] |
|
.to(hidden_states.dtype) |
|
.to(hidden_states.device) |
|
) |
|
idx += cnt |
|
else: |
|
idx = 0 |
|
assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}' |
|
for i, g in enumerate(selected_g_values): |
|
cnt = self.num_img_tokens |
|
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = ( |
|
img_set_tensor[i * cnt : (i + 1) * cnt] |
|
.to(hidden_states.dtype) |
|
.to(hidden_states.device) |
|
) |
|
idx += cnt |
|
|
|
if self.drop is not None: |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|