# coding=utf-8 # Copyright 2024 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Magma model.""" import math import re import os from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn import torch.distributed as dist from transformers.modeling_utils import PreTrainedModel from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.utils import ModelOutput from transformers.utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from transformers import AutoConfig, AutoModelForCausalLM from .configuration_magma import MagmaConfig from .image_tower_magma import MagmaImageTower logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MagmaConfig" @dataclass # Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Magma class MagmaCausalLMOutputWithPast(ModelOutput): """ Base class for Magma causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class MagmaMultiModalProjector(nn.Module): def __init__(self, config): super().__init__() self.config = config dim_vision = {'base': 640, 'large': 768, 'xxlarge': 1024} vision_backbone = config.get('vision_backbone', 'convnextxxlarge') vision_backbone_size = vision_backbone.replace('convnext', '') projector_type = config.get('mm_projector_type', 'linear') mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) if mlp_gelu_match: mlp_depth = int(mlp_gelu_match.group(1)) modules = [nn.Linear(config['mm_hidden_size'], config['hidden_size'])] for _ in range(1, mlp_depth): modules.append(nn.GELU()) modules.append(nn.Linear(config['hidden_size'], config['hidden_size'])) self.proj = nn.Sequential(*modules) # define a row seperator self.row_seperator = nn.Parameter(torch.zeros(1, 1, config['hidden_size'])) if config.get('mm_use_im_start_end', False): self.img_start_seperator = nn.Parameter(torch.zeros(1, config['hidden_size'])) self.img_end_seperator = nn.Parameter(torch.zeros(1, config['hidden_size'])) def forward(self, x): return self.proj(x) MAGMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MagmaConfig`] or [`MagmaVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", MAGMA_START_DOCSTRING, ) class MagmaPreTrainedModel(PreTrainedModel): config_class = MagmaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MagmaVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True def _init_weights(self, module): std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def _supports_sdpa(self): """ Retrieve language_model's attribute to check whether the model supports SDPA or not. """ return self.language_model._supports_sdpa MAGMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MagmaImageProcessor.__call__`] for details. [`MagmaProcessor`] uses [`MagmaImageProcessor`] for processing images. image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): The sizes of the images in the batch, being (height, width) for each image. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. If `"full"`, the full vision features are used. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The Magma model which consists of a vision backbone and a language model.""", MAGMA_START_DOCSTRING, ) class MagmaForCausalLM(MagmaPreTrainedModel): def __init__(self, config: MagmaConfig): super().__init__(config) self.vision_tower = MagmaImageTower(config.vision_config, require_pretrained=False) config.vision_config['mm_hidden_size'] = config.vision_config['mm_hidden_size'] \ if 'mm_hidden_size' in config.vision_config else self.vision_tower.hidden_size config.vision_config['hidden_size'] = config.vision_config['hidden_size'] \ if 'hidden_size' in config.vision_config else self.config.text_config.hidden_size self.multi_modal_projector = MagmaMultiModalProjector(config.vision_config) self.vocab_size = config.text_config.vocab_size if hasattr(config.text_config, 'auto_map'): del config.text_config.auto_map try: self.language_model = AutoModelForCausalLM.from_config( config.text_config, # attn_implementation=config._attn_implementation, trust_remote_code=True ) except: self.language_model = AutoModelForCausalLM.from_pretrained( config.text_config._name_or_path, # attn_implementation=config._attn_implementation, trust_remote_code=True ) self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides self.post_init() # def from_pretrained(self, pretrained_model_name_or_path, *model_args, **kwargs): # import pdb; pdb.set_trace() # kwargs["_from_auto"] = True # return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @property def padding_side(self): return self._padding_side @padding_side.setter def padding_side(self, padding_side: str): if padding_side not in ["left", "right"]: raise ValueError(f"{padding_side} is not `left` or `right`.") self._padding_side = padding_side def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def tie_weights(self): return self.language_model.tie_weights() def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds def _merge_input_ids_with_image_features( self, image_features, feature_lens, inputs_embeds, input_ids, attention_mask, position_ids=None, labels=None, image_token_index=None, ignore_index=-100, ): """ Merge input_ids with with image features into final embeddings Args: image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`): All vision vectors of all images in the batch feature_lens (`torch.LongTensor` of shape `(num_images)`): The length of visual embeddings of each image as stacked in `image_features` inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): Token embeddings before merging with visual embeddings input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input_ids of tokens, possibly filled with image token attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Mask to avoid performing attention on padding token indices. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) :abels need to be recalculated to support training (if provided) image_token_index (`int`, *optional*) Token id used to indicate the special "image" token. Defaults to `config.image_token_index` ignore_index (`int`, *optional*) Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100. Returns: final_embedding, final_attention_mask, position_ids, final_labels Explanation: each image has variable length embeddings, with length specified by feature_lens image_features is concatenation of all visual embed vectors task: fill each with the correct number of visual embeddings Example: X (5 patches), Y (3 patches), Z (8) X, Y are in the same sequence (in-context learning) if right padding input_ids: [ a b c d e f X g h i j k Y l m o p q r Z s t u v _ _ _ _ _ _ ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ ] elif left padding input_ids: [ a b c d e f X g h i j k Y l m _ _ _ _ _ _ o p q r Z s t u v ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m _ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m _ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v ] Edge cases: * If tokens are same but image token sizes are different, then cannot infer left or right padding input_ids: [ a b c d X g h i j Y k l m n ] where X is 3 tokens while Y is 5, this mean after merge if left-padding (batched generation) input_ids should be: [ _ _ a b c d X X X g h i j Y Y Y Y Y k l m n ] elif (right padding) (training) input_ids should be: [ a b c d X X X g h _ _ i j Y Y Y Y Y k l m n ] """ image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index with torch.no_grad(): num_images = feature_lens.size(0) num_image_features, embed_dim = image_features.shape if feature_lens.sum() != num_image_features: raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}") batch_size = input_ids.shape[0] _left_padding = torch.any(attention_mask[:, 0] == 0) _right_padding = torch.any(attention_mask[:, -1] == 0) left_padding = True if batch_size > 1: if _left_padding and not _right_padding: left_padding = True elif not _left_padding and _right_padding: left_padding = False elif not _left_padding and not _right_padding: # both side is 1, so cannot tell left_padding = self.padding_side == "left" else: # invalid attention_mask raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") # Whether to turn off right padding # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == image_token_index # special_image_token_mask: [bsz, seqlen] num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # num_special_image_tokens: [bsz] # Reserve for padding of num_images total_num_special_image_tokens = torch.sum(special_image_token_mask) if total_num_special_image_tokens != num_images: raise ValueError( f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})." ) # Compute the maximum embed dimension # max_image_feature_lens is max_feature_lens per batch feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0) feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=feature_lens.device) embed_sequence_lengths = ( (attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum ) max_embed_dim = embed_sequence_lengths.max() batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1)) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. # ! instead of special_image_token_mask * (num_image_patches - 1) # special_image_token_mask * (num_feature_len - 1) special_image_token_mask = special_image_token_mask.long() special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1 new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1 if left_padding: # shift right token positions so that they are ending at the same number # the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:] new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:] text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device ) final_labels = None if labels is not None: # NOTE: this is a bug in the original code!!! final_labels = torch.full_like(final_attention_mask.long(), ignore_index).to(torch.long) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] if labels is not None: final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) with torch.no_grad(): image_to_overwrite = torch.full( (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device ) image_to_overwrite[batch_indices, text_to_overwrite] = False embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device) embed_indices = embed_indices.expand(batch_size, max_embed_dim) embed_seq_lens = embed_sequence_lengths[:, None].to(target_device) if left_padding: # exclude padding on the left val = (max_embed_dim - embed_indices) <= embed_seq_lens else: # exclude padding on the right val = embed_indices < embed_seq_lens image_to_overwrite &= val if image_to_overwrite.sum() != num_image_features: raise ValueError( f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. " f"The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. " f"This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) return final_embedding, final_attention_mask, position_ids, final_labels @add_start_docstrings_to_model_forward(MAGMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MagmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: Union[torch.FloatTensor, List[torch.FloatTensor], List[List[torch.FloatTensor]]] = None, image_sizes: Union[torch.LongTensor, List[torch.LongTensor], List[List[torch.LongTensor]]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MagmaCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, MagmaForConditionalGeneration >>> model = MagmaForConditionalGeneration.from_pretrained("microsoft/magma-8b-hf") >>> processor = AutoProcessor.from_pretrained("microsoft/magma-8b-hf") >>> prompt = "[INST] \nWhat is shown in this image? [/INST]" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=prompt, images=image, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_config['vision_feature_layer'] ) use_cache = use_cache if use_cache is not None else self.config.use_cache if inputs_embeds is None: # 1. Extract the input embeddings # In case image_token_index is not in the embeddings (extra token but embedding don't have it) for_inputs_embeds_ids = input_ids.clone() for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0 inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids) # 2. Merge text and images if pixel_values is not None and input_ids.shape[1] != 1 and len(pixel_values) > 0: # ! infer image_num_patches from image_sizes if type(pixel_values) == list: # nested list of pixel_values, each element is a list of pixel_values for each training instance, it could be multiple for video or interleaved setting # e.g., pixel_values = [[img1, img2], [img1, img2, img3]] n_imgs_per_sample = [len(pv) for pv in pixel_values] pixels_values_list = sum(pixel_values, []) image_sizes_list = sum(image_sizes, []) else: image_num_patches = [(imsize[imsize.sum(1) > 0,0] * imsize[imsize.sum(1) > 0,1]).tolist() for imsize in image_sizes] # image_num_patches = [(imsize[:,0]*imsize[:,1]).tolist() for imsize in image_sizes] # figure out if pixel_values is concatenated or stacked if pixel_values.dim() == 5: # stacking when input is (batch_size, num_patches, num_channels, height, width) _pixel_values_list = [ pix_val[:sum(num_patch)].split(num_patch, dim=0) for pix_val, num_patch in zip(pixel_values, image_num_patches) ] _image_sizes_list = [image_size[image_size.sum(-1) > 0].tolist() for image_size in image_sizes] elif pixel_values.dim() != 4: # otherwise has to be stacked from list of (num_patches, num_channels, height, width) raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions") if self.config.vision_config['img_anyres_strategy'] == "global": selected_image_features = [] # NOTE: both _image_sizes_list and _pixel_values_list are lists of lists, each item represents an training instance with one or multiple images for idx, (image_size_for_instance, pixel_values_for_instance) in enumerate(zip(_image_sizes_list, _pixel_values_list)): assert len(image_size_for_instance) == len(pixel_values_for_instance), f"{len(image_size_for_instance)} != {len(pixel_values_for_instance)}" for image_size, pixel_values_for_image in zip(image_size_for_instance, pixel_values_for_instance): pixel_values_for_image = pixel_values_for_image.view(image_size[0], image_size[1], *pixel_values_for_image.shape[1:]) pixel_values_for_image = pixel_values_for_image.permute(2, 0, 3, 1, 4).flatten(3, 4).flatten(1, 2).unsqueeze(0) image_features = self.vision_tower(pixel_values_for_image) selected_image_feature = image_features[vision_feature_layer][0].permute(1, 2, 0) selected_image_feature = self.multi_modal_projector(selected_image_feature) selected_image_feature = torch.cat((selected_image_feature, self.multi_modal_projector.row_seperator.repeat(selected_image_feature.shape[0],1,1)), dim=1) selected_image_features.append(selected_image_feature.flatten(0, 1)) elif self.config.vision_config['img_anyres_strategy'] == "crop": # calculate number of crops for each instance in the batch given _image_sizes_list _image_sizes_list_temp = sum(_image_sizes_list, []) # concate nate all images in _pixel_values_list _pixel_values_list_temp = sum(_pixel_values_list, ()) _pixel_values_list_temp = torch.cat(_pixel_values_list_temp, dim=0) image_features = self.vision_tower(_pixel_values_list_temp)[vision_feature_layer].permute(0, 2, 3, 1) image_features = self.multi_modal_projector(image_features) num_crops_list = [_image_size[0]*_image_size[1] for _image_size in _image_sizes_list_temp] image_features_split = torch.split(image_features, num_crops_list, dim=0) selected_image_features = [] for image_feature, image_size in zip(image_features_split, _image_sizes_list_temp): image_feature = image_feature.view(image_size[0], image_size[1], *image_feature.shape[1:]) image_feature = image_feature.permute(0, 2, 1, 3, 4).flatten(2, 3).flatten(0, 1) image_feature = torch.cat((image_feature, self.multi_modal_projector.row_seperator.repeat(image_feature.shape[0],1,1)), dim=1) selected_image_features.append(image_feature.flatten(0, 1)) # raise NotImplementedError("crop strategy is not implemented yet") # image_features = self.vision_tower(pixel_values) # selected_image_feature = image_features[vision_feature_layer] # image_features = torch.split(image_features, image_num_patches, dim=0) # NOTE we only support multimodal_patch_merge_type == "spatial_unpad" feature_lens = [elem.shape[0] for elem in selected_image_features] image_features = torch.cat(selected_image_features, 0) feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device) # inputs_embeds = inputs_embeds.to(image_features.dtype) inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features( image_features, feature_lens, inputs_embeds, input_ids, attention_mask, position_ids, labels=labels, ) # pixel_values is not None but is empty ---> text only cases elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0: # there are no images pass # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of # generation with cache elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) # Get the target length target_length = input_ids.shape[1] past_length = first_layer_past_key_value.shape[-1] extended_attention_mask = torch.ones( (attention_mask.shape[0], past_length), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 # outputs = self.language_model( # attention_mask=attention_mask, # position_ids=position_ids, # past_key_values=past_key_values, # inputs_embeds=inputs_embeds, # use_cache=use_cache, # output_attentions=output_attentions, # output_hidden_states=output_hidden_states, # return_dict=return_dict, # ) # logits = outputs[0] # loss = None # if labels is not None: # # Shift so that tokens < n predict n # if attention_mask is not None: # shift_attention_mask = attention_mask[..., 1:] # shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() # shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() # else: # shift_logits = logits[..., :-1, :].contiguous() # shift_labels = labels[..., 1:].contiguous() # # Flatten the tokens # loss_fct = nn.CrossEntropyLoss() # loss = loss_fct( # shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) # ) outputs = self.language_model.model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) hidden_states = outputs[0] loss = None if labels is not None and self.training: valid_mask = labels[..., 1:] != -100 shift_logits = self.language_model.lm_head(hidden_states[:,:-1][valid_mask]).contiguous() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) logits = shift_logits # dummy logits shift_labels = labels[..., 1:][valid_mask].contiguous() shift_labels = shift_labels.to(shift_logits.device) loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits, shift_labels) # localize the positions for shift_labels where the id is in betweek [config.tokenizer_vocab_size-256, config.tokenizer_vocab_size] valid_indices = (shift_labels=self.config.tokenizer_vocab_size-256) if valid_indices.sum() > 0: action_labels = shift_labels[valid_indices] action_logits = shift_logits[valid_indices] # calcualte the accuracy action_accuracy = (action_logits.argmax(-1) == action_labels).float().mean() # log the action accuracy else: action_accuracy = torch.tensor(0.0).to(shift_logits.device) # torch distributed gather the action accuracy across all devices action_accuracy = action_accuracy.unsqueeze(0) # gather the action accuracy across all devices action_accuracy_gather = [torch.zeros_like(action_accuracy) for _ in range(dist.get_world_size())] dist.all_gather(action_accuracy_gather, action_accuracy) # concatenate the action accuracy across all devices action_accuracy = torch.cat(action_accuracy_gather) else: logits = self.language_model.lm_head(hidden_states) logits = logits.float() if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return MagmaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, image_sizes=None, attention_mask=None, **kwargs, ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. elif self.config.image_token_index in input_ids: input_ids = input_ids[:, input_ids.shape[1] - 1 :] # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the # older attention values, as their corresponding values are not part of the input. if cache_length < past_length and attention_mask is not None: attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "pixel_values": pixel_values, "image_sizes": image_sizes, } ) return model_inputs def _reorder_cache(self, *args, **kwargs): return self.language_model._reorder_cache(*args, **kwargs) @add_start_docstrings( """The Magma model which consists of a vision backbone and a language model.""", MAGMA_START_DOCSTRING, ) class MagmaForConditionalGeneration(MagmaPreTrainedModel): def __init__(self, config: MagmaConfig): super().__init__(config) self.vision_tower = MagmaImageTower(config.vision_config, require_pretrained=('magma' not in config.name_or_path)) self.multi_modal_projector = MagmaMultiModalProjector(config.vision_config) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config( config.text_config, # attn_implementation=config._attn_implementation, trust_remote_code=True ) self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides self.post_init() @property def padding_side(self): return self._padding_side @padding_side.setter def padding_side(self, padding_side: str): if padding_side not in ["left", "right"]: raise ValueError(f"{padding_side} is not `left` or `right`.") self._padding_side = padding_side def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def tie_weights(self): return self.language_model.tie_weights() def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds def _merge_input_ids_with_image_features( self, image_features, feature_lens, inputs_embeds, input_ids, attention_mask, position_ids=None, labels=None, image_token_index=None, ignore_index=-100, ): """ Merge input_ids with with image features into final embeddings Args: image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`): All vision vectors of all images in the batch feature_lens (`torch.LongTensor` of shape `(num_images)`): The length of visual embeddings of each image as stacked in `image_features` inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): Token embeddings before merging with visual embeddings input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Input_ids of tokens, possibly filled with image token attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Mask to avoid performing attention on padding token indices. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) :abels need to be recalculated to support training (if provided) image_token_index (`int`, *optional*) Token id used to indicate the special "image" token. Defaults to `config.image_token_index` ignore_index (`int`, *optional*) Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100. Returns: final_embedding, final_attention_mask, position_ids, final_labels Explanation: each image has variable length embeddings, with length specified by feature_lens image_features is concatenation of all visual embed vectors task: fill each with the correct number of visual embeddings Example: X (5 patches), Y (3 patches), Z (8) X, Y are in the same sequence (in-context learning) if right padding input_ids: [ a b c d e f X g h i j k Y l m o p q r Z s t u v _ _ _ _ _ _ ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ ] elif left padding input_ids: [ a b c d e f X g h i j k Y l m _ _ _ _ _ _ o p q r Z s t u v ] input_ids should be: [ a b c d e f X X X X X g h i j k Y Y Y l m _ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v ] labels should be: [ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m _ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v ] Edge cases: * If tokens are same but image token sizes are different, then cannot infer left or right padding input_ids: [ a b c d X g h i j Y k l m n ] where X is 3 tokens while Y is 5, this mean after merge if left-padding (batched generation) input_ids should be: [ _ _ a b c d X X X g h i j Y Y Y Y Y k l m n ] elif (right padding) (training) input_ids should be: [ a b c d X X X g h _ _ i j Y Y Y Y Y k l m n ] """ image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index with torch.no_grad(): num_images = feature_lens.size(0) num_image_features, embed_dim = image_features.shape if feature_lens.sum() != num_image_features: raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}") batch_size = input_ids.shape[0] _left_padding = torch.any(attention_mask[:, 0] == 0) _right_padding = torch.any(attention_mask[:, -1] == 0) left_padding = True if batch_size > 1: if _left_padding and not _right_padding: left_padding = True elif not _left_padding and _right_padding: left_padding = False elif not _left_padding and not _right_padding: # both side is 1, so cannot tell left_padding = self.padding_side == "left" else: # invalid attention_mask raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") # Whether to turn off right padding # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == image_token_index # special_image_token_mask: [bsz, seqlen] num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # num_special_image_tokens: [bsz] # Reserve for padding of num_images total_num_special_image_tokens = torch.sum(special_image_token_mask) if total_num_special_image_tokens != num_images: raise ValueError( f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})." ) # Compute the maximum embed dimension # max_image_feature_lens is max_feature_lens per batch feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0) feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=feature_lens.device) embed_sequence_lengths = ( (attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum ) max_embed_dim = embed_sequence_lengths.max() batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1)) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. # ! instead of special_image_token_mask * (num_image_patches - 1) # special_image_token_mask * (num_feature_len - 1) special_image_token_mask = special_image_token_mask.long() special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1 new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1 if left_padding: # shift right token positions so that they are ending at the same number # the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:] new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:] text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device ) final_labels = None if labels is not None: final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] if labels is not None: final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) with torch.no_grad(): image_to_overwrite = torch.full( (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device ) image_to_overwrite[batch_indices, text_to_overwrite] = False embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device) embed_indices = embed_indices.expand(batch_size, max_embed_dim) embed_seq_lens = embed_sequence_lengths[:, None].to(target_device) if left_padding: # exclude padding on the left val = (max_embed_dim - embed_indices) <= embed_seq_lens else: # exclude padding on the right val = embed_indices < embed_seq_lens image_to_overwrite &= val if image_to_overwrite.sum() != num_image_features: raise ValueError( f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. " f"The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. " f"This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) return final_embedding, final_attention_mask, position_ids, final_labels @add_start_docstrings_to_model_forward(MAGMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MagmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, image_sizes: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MagmaCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, MagmaForConditionalGeneration >>> model = MagmaForConditionalGeneration.from_pretrained("microsoft/magma-8b-hf") >>> processor = AutoProcessor.from_pretrained("microsoft/magma-8b-hf") >>> prompt = "[INST] \nWhat is shown in this image? [/INST]" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=prompt, images=image, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_config['vision_feature_layer'] ) if inputs_embeds is None: # 1. Extract the input embeddings # In case image_token_index is not in the embeddings (extra token but embedding don't have it) for_inputs_embeds_ids = input_ids.clone() for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0 inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids) # 2. Merge text and images if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0: # ! infer image_num_patches from image_sizes # figure out if pixel_values is concatenated or stacked if pixel_values.dim() == 5: image_num_patches = [(imsize[:,0]*imsize[:,1]).tolist() for imsize in image_sizes] # stacking when input is (batch_size, num_patches, num_channels, height, width) _pixel_values_list = [ pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches) ] pixel_values = torch.cat(_pixel_values_list, dim=0) elif pixel_values.dim() != 4: # otherwise has to be stacked from list of (num_patches, num_channels, height, width) raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions") if self.config.vision_config['img_anyres_strategy'] == "global": num_patches_for_images = [(imsize[0]*imsize[1]).item() for imsize in image_sizes] pixel_values_for_images = pixel_values.split(num_patches_for_images, dim=0) selected_image_features = [] for idx, (image_size, pixel_values_for_image) in enumerate(zip(image_sizes, pixel_values_for_images)): pixel_values_for_image = pixel_values_for_image.view(image_size[0], image_size[1], *pixel_values_for_image.shape[1:]) pixel_values_for_image = pixel_values_for_image.permute(2, 0, 3, 1, 4).flatten(3, 4).flatten(1, 2).unsqueeze(0) image_features = self.vision_tower(pixel_values_for_image) selected_image_feature = image_features[vision_feature_layer][0].permute(1, 2, 0) selected_image_feature = self.multi_modal_projector(selected_image_feature) selected_image_feature = torch.cat((selected_image_feature, self.multi_modal_projector.row_seperator.repeat(selected_image_feature.shape[0],1,1)), dim=1) selected_image_features.append(selected_image_feature) elif self.config.vision_config['img_anyres_strategy'] == "crop": image_features = self.vision_tower(pixel_values)[vision_feature_layer].permute(0, 2, 3, 1) image_features = self.multi_modal_projector(image_features) num_patches_for_images = [(imsize[0]*imsize[1]).item() for imsize in image_sizes] image_features_split = torch.split(image_features, num_patches_for_images, dim=0) selected_image_features = [] for image_feature, image_size in zip(image_features_split, image_sizes): image_feature = image_feature.view(image_size[0], image_size[1], *image_feature.shape[1:]) image_feature = image_feature.permute(0, 2, 1, 3, 4).flatten(2, 3).flatten(0, 1) image_feature = torch.cat((image_feature, self.multi_modal_projector.row_seperator.repeat(image_feature.shape[0],1,1)), dim=1) selected_image_features.append(image_feature) # NOTE we only support multimodal_patch_merge_type == "spatial_unpad" feature_lens = [elem.shape[0]*elem.shape[1] for elem in selected_image_features] image_features = torch.cat([elem.flatten(0, 1) for elem in selected_image_features], 0) feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device) # inputs_embeds = inputs_embeds.to(image_features.dtype) inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features( image_features, feature_lens, inputs_embeds, input_ids, attention_mask, position_ids, labels=labels, ) # pixel_values is not None but is empty ---> text only cases elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0: # there are no images pass # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of # generation with cache elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) # Get the target length target_length = input_ids.shape[1] past_length = first_layer_past_key_value.shape[-1] extended_attention_mask = torch.ones( (attention_mask.shape[0], past_length), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return MagmaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, image_sizes=None, attention_mask=None, **kwargs, ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. elif self.config.image_token_index in input_ids: input_ids = input_ids[:, input_ids.shape[1] - 1 :] # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the # older attention values, as their corresponding values are not part of the input. if cache_length < past_length and attention_mask is not None: attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "pixel_values": pixel_values, "image_sizes": image_sizes, } ) return model_inputs def _reorder_cache(self, *args, **kwargs): return self.language_model._reorder_cache(*args, **kwargs) AutoConfig.register("magma", MagmaConfig) AutoModelForCausalLM.register(MagmaConfig, MagmaForConditionalGeneration)