--- base_model: stabilityai/stable-diffusion-2 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true --- # Text-to-image finetuning - mhbkb/base_diffusion_models_nightshade300_visualwrong This pipeline was finetuned from **stabilityai/stable-diffusion-2** on the **None** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['a photo of a dog']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("mhbkb/base_diffusion_models_nightshade300_visualwrong", torch_dtype=torch.float16) prompt = "a photo of a dog" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 10 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 768 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/javabkb-university-of-arizona/text2image-fine-tune/runs/6boqrbd0). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]