--- language: - ms - en - zh - ta --- # Llama 3.2 1B Malaysian Reasoning Continue finetuning https://huggingface.co/meta-llama/Llama-3.2-1B on highly curated 1.2B tokens Malaysian instruction including reasoning dataset. ## Improvement 1. 128k context length. 2. Support respond in Mandarin, Tamil, Jawi, Manglish, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu. 3. Able to code in Mandarin, Tamil, Jawi, Manglish, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu. 4. Multi-turn Malaysian context such as related to Malaysian Legislation, politics, religions and languages. 5. Standard RAG. 6. Reasoning! Support minimal reasoning in Mandarin, Tamil, Jawi, Manglish, Johor, Kedah, Kelantan, Pahang, Perak, Sabah, Sarawak, Selangor, Negeri Sembilan and Terengganu. ## MalayMMLU ``` Model Accuracy shot by_letter category 0 Llama-3.2-1B-Malaysian-Reasoning 48.939419 0shot True STEM 1 Llama-3.2-1B-Malaysian-Reasoning 42.529898 0shot True Language 2 Llama-3.2-1B-Malaysian-Reasoning 45.995663 0shot True Social science 3 Llama-3.2-1B-Malaysian-Reasoning 49.323099 0shot True Others 4 Llama-3.2-1B-Malaysian-Reasoning 49.043231 0shot True Humanities {'Social science': 6918, 'Language': 6288, 'Humanities': 4395, 'Others': 4169, 'STEM': 2443} Model : Llama-3.2-1B-Malaysian-Reasoning Metric : first Shot : 0shot average accuracy 47.16626209232134 accuracy for STEM 48.93941874744167 accuracy for Language 42.529898218829516 accuracy for Social science 45.99566348655681 accuracy for Others 49.323099064523866 accuracy for Humanities 49.04323094425484 ``` ## Training session We done 2 stage of training, 1. Finetune on [Malaysian SFT](https://huggingface.co/datasets/mesolitica/Malaysian-SFT) to make the model understand Malaysian context. - Wandb at https://wandb.ai/huseinzol05/lora-embedding-256-llama3.2-1b-small-malaysian-reasoning 2. Continue finetune on [Malaysian Reasoning](https://huggingface.co/datasets/mesolitica/Malaysian-Reasoning) including small samples of [Malaysian SFT](https://huggingface.co/datasets/mesolitica/Malaysian-SFT) to make it become reasoning model. - Wandb at https://wandb.ai/huseinzol05/lora-embedding-256-llama3.2-1b-small-malaysian-reasoning-cont ## How we train 1. LoRA on `["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "embed_tokens", "lm_head"]`. 2. 256 Rank with alpha 512, or alpha of 2.0 3. Multipacking with proper SDPA causal masking to prevent document contamination and also make sure proper position ids. 4. Forked CCE loss for LoRA `lm_head` to reduce memory consumption. Low Rank adapters pushed at [malayloraenjoyer/Llama-3.2-1B-Malaysian-Reasoning-LoRA](https://huggingface.co/malayloraenjoyer/Llama-3.2-1B-Malaysian-Reasoning-LoRA). Source code at https://github.com/mesolitica/malaya/tree/master/session/small-malaysian-reasoning