--- base_model: openai/whisper-medium datasets: - google/fleurs language: - hi license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Medium Hindi -megha sharma results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: hi_in split: None args: 'config: hi, split: test' metrics: - type: wer value: 18.02030456852792 name: Wer --- # Whisper Medium Hindi -megha sharma This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4333 - Wer: 18.0203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 25000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.0669 | 3.3898 | 1000 | 0.2086 | 20.9684 | | 0.0115 | 6.7797 | 2000 | 0.2637 | 19.7579 | | 0.0034 | 10.1695 | 3000 | 0.3012 | 19.6408 | | 0.0026 | 13.5593 | 4000 | 0.3179 | 19.2893 | | 0.0014 | 16.9492 | 5000 | 0.3242 | 18.7817 | | 0.0024 | 20.3390 | 6000 | 0.3348 | 19.1624 | | 0.0024 | 23.7288 | 7000 | 0.3421 | 19.7774 | | 0.0006 | 27.1186 | 8000 | 0.3511 | 18.6939 | | 0.0008 | 30.5085 | 9000 | 0.3632 | 18.8989 | | 0.0007 | 33.8983 | 10000 | 0.3600 | 18.7622 | | 0.0006 | 37.2881 | 11000 | 0.3470 | 18.4791 | | 0.0002 | 40.6780 | 12000 | 0.3548 | 18.2936 | | 0.0001 | 44.0678 | 13000 | 0.3711 | 18.0594 | | 0.0006 | 47.4576 | 14000 | 0.3733 | 18.2839 | | 0.0003 | 50.8475 | 15000 | 0.3766 | 18.1667 | | 0.0 | 54.2373 | 16000 | 0.3745 | 18.0203 | | 0.0 | 57.6271 | 17000 | 0.3914 | 17.8739 | | 0.0 | 61.0169 | 18000 | 0.4003 | 17.9032 | | 0.0 | 64.4068 | 19000 | 0.4081 | 17.8641 | | 0.0 | 67.7966 | 20000 | 0.4153 | 17.8544 | | 0.0 | 71.1864 | 21000 | 0.4219 | 17.8544 | | 0.0 | 74.5763 | 22000 | 0.4281 | 18.0105 | | 0.0 | 77.9661 | 23000 | 0.4333 | 18.0203 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1