--- license: llama3.2 base_model: - meta-llama/Llama-3.2-1B-Instruct model-index: - name: Llama-3.2-SUN-2.4B-v1.0.0 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 53.89 name: strict accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.4B-v1.0.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 6.46 name: normalized accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.4B-v1.0.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 3.25 name: exact match source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.4B-v1.0.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.4B-v1.0.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 2.38 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.4B-v1.0.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 5.91 name: accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.4B-v1.0.0 name: Open LLM Leaderboard datasets: - argilla/OpenHermesPreferences - argilla/magpie-ultra-v0.1 - argilla/Capybara-Preferences-Filtered - mlabonne/open-perfectblend - HuggingFaceTB/everyday-conversations-llama3.1-2k - WizardLMTeam/WizardLM_evol_instruct_V2_196k - ProlificAI/social-reasoning-rlhf language: - en --- # MedIT SUN 2.5B
Llama-3.2-MedIT-SUN-2.5B
**Base Model** - Llama 3.2 1B **Extended Size** - 1B to 2.5B parameters **Extension Method** - Proprietary technique developed by MedIT Solutions **Fine-tuning** - Open (or open subsets allowing for commercial use) open datasets from HF - Open (or open subsets allowing for commercial use) SFT datasets from HF **Training Status** - Current version: chat-1.0.0 **Key Features** - Built on Llama 3.2 architecture - Expanded from 1B to 2.4B parameters - Optimized for open-ended conversations - Incorporates supervised fine-tuning for improved performance **Use Case** - General conversation and task-oriented interactions **Limitations** As the model is still in training, performance and capabilities may vary. Users should be aware that the model is not in its final form and may exhibit inconsistencies or limitations typical of in-progress AI models. **Disclaimer and Safety Considerations** The Model is designed to be used as a smart assistant but not as a knowledge source within your applications, systems, or environments. It is not intended to provide 100% accurate answers, especially in scenarios where high precision and accuracy are crucial. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meditsolutions__Llama-3.2-SUN-2.4B-v1.0.0) | Metric |Value| |-------------------|----:| |Avg. |11.98| |IFEval (0-Shot) |53.89| |BBH (3-Shot) | 6.46| |MATH Lvl 5 (4-Shot)| 3.25| |GPQA (0-shot) | 0.00| |MuSR (0-shot) | 2.38| |MMLU-PRO (5-shot) | 5.91|