--- language: - en license: llama3.1 tags: - medit-mesh base_model: - meta-llama/Llama-3.1-8B-Instruct - arcee-ai/Llama-3.1-SuperNova-Lite pipeline_tag: text-generation model-index: - name: Llama-3.1-MedIT-SUN-8B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 78.37 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.0 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 20.02 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 7.83 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 9.64 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 32.4 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B name: Open LLM Leaderboard --- # Llama-3.1-MedIT-SUN-8B ## Model Description Llama-3.1-MedIT-SUN-8B is an experimental language model that leverages model merging techniques to combine the capabilities of multiple foundation models. This 8B parameter model is built upon the Llama-3.1-8B-Instruct architecture and represents an exploration in model fusion methodologies. ## Key Features - **Base Architecture**: Meta's Llama-3.1-8B-Instruct - **Parameter Count**: 8 billion - **Development**: Created by MedIT Solutions - **Merged Components**: - arcee-ai/Llama-3.1-SuperNova-Lite - meta-llama/Llama-3.1-8B-Instruct ## Technical Details The model utilizes the proprietary MedIT-mesh technique for model merging, demonstrating an experimental approach to combining language models. This implementation serves as a proof of concept and testing ground for model fusion methodologies. ## Purpose This model was developed primarily for testing and research purposes, exploring the potential of model merging techniques in language model development. It should be considered an experimental release rather than a production-ready model. ## Usage Notes As this is a test model, it is recommended for research and experimental purposes only. Users should be aware of its experimental nature when considering it for any applications. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meditsolutions__Llama-3.1-MedIT-SUN-8B) | Metric |Value| |-------------------|----:| |Avg. |30.04| |IFEval (0-Shot) |78.37| |BBH (3-Shot) |32.00| |MATH Lvl 5 (4-Shot)|20.02| |GPQA (0-shot) | 7.83| |MuSR (0-shot) | 9.64| |MMLU-PRO (5-shot) |32.40|